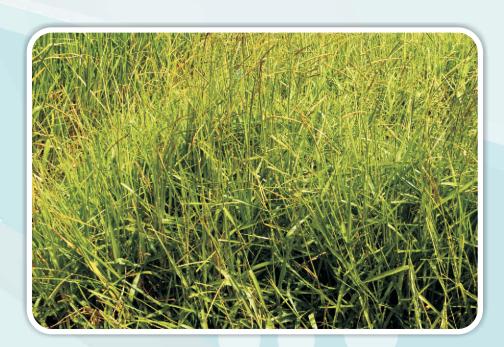


अ.भा.स.अ.ए. (चारा) AICRP Forage

वार्षिक प्रतिवेदन ANNUAL REPORT (2021-22)


Part-I: Kharif-2021

अखिल भारतीय समन्वयित अनुसंधान परियोजना चारा फसलें एवं उपयोगिता (भारतीय कृषि अनुसंधान परिषद) भा.कृ.अनु.प.-भा.च.चा.अनु.सं., झाँसी-284 003 (उ.प्र.)

All India Coordinated Research Project on Forage Crops & Utilization (Indian Council of Agricultural Research) ICAR-IGFRI, Jhansi-284 003 (U.P.)

Website: http://www.aicrponforagecrops.gov.in

June, 2022

Agrisearch with a Buman touch

AICRP ON FORAGE CROPS AND UTILIZATION

Tech. Pub. Number-01/2022

This report is meant for official use only. It should not be quoted without permission from AICRP (FC&U)/ICAR.

June, 2022 AICRP-FC&U, Jhansi-284003 (U.P.)

Compilation and Editing

Crop Improvement : A.K. Roy (Project Coordinator)
 Crop Production : R.K. Agrawal (PI: Crop Production)
 Crop Protection : N.R. Bhardwaj (PI: Crop Protection)

Breeder Seed Production : A.K. RoyWeather Report : R.K. Agrawal

Published by

Project Coordinator
AICRP on Forage Crops & Utilization,
ICAR-IGFRI, Jhansi-284 003 Uttar Pradesh

Phone/Fax: 0510-2730029 Email: pcforage@gmail.com

Website: http://www.aicrponforagecrops.gov.in

Distribution

AICRP (FC&U) Centres, ICAR Headquarters and selected Forage Scientists.

National Group Meeting

SKUAST-K, Srinagar June 13-14, 2022

Support

All the staff of AICRP (FC & U) centres, PI's, Sh. R. Patel and Sh. H.K. Agarwal

वार्षिक प्रतिवेदन ANNUAL REPORT (2021-22)

Part-I: Kharif-2021

अखिल भारतीय समन्वयित अनुसंधान परियोजना चारा फसलें एवं उपयोगिता (भारतीय कृषि अनुसंधान परिषद) भा.कृ.अनु.प.-भा.च.चा.अनु.सं., झाँसी-284 003 (उ.प्र.)

All India Coordinated Research Project on Forage Crops & Utilization (Indian Council of Agricultural Research) ICAR-IGFRI, Jhansi-284 003 (U.P.)

Website: http://www.aicrponforagecrops.gov.in

June, 2022

Foreword

India with only 2.29 % of land area of the world, is maintaining nearly 17.4% of world human population and 10.7% of livestock creating a huge pressure on land, water and other resources. Recent trend in animal husbandry indicates a rapid and considerable increase in the consumption of livestock products. However, deficiency in quality feed

andfodder is a major hurdle in achieving desired level of livestock production. The production and quality of feed and fodder will be pivotal in sustaining the incremental growth of the animal husbandry sector. Due to competing land use, area under cultivated fodder has been static for the last two decades andthus, can hardly compete with other sectors of agriculture. Hence, the only option available is to catalyze horizontal increase in underutilized areas and vertical increase in the forage productivity to meet the ever increasing demand of the fodder for economic livestock production. At present the productivity of cultivated fodder crops is low, due to least attention and allocation of minimal production resources on one hand and non-availability of the production techniques to stakeholders involved in the forage resource development. This needs to be tackled by generation of production packages of fodder crops like selection of appropriate forage species, varieties and management techniques to sustain forage yields and soil fertility.

The country has varied agro climatic conditions as well as farming situation. In these circumstances, the objective of improving the forage varieties and forage productivity is complicated. Each crop has to be dealt with concise manner to accommodate the information on sowing technique, varieties, nutrient management, water management, crop protection, quality attributes and harvesting. AICRP on Forage Crops & Utilization is pursuing successfully the mandate for development of varieties, technique for raising cultivated forage crops and grasses of annual and perennial nature and eco-friendly crop protection technologies.

I would like to congratulate Project coordinator and other scientists of PC (FC&U) unit who have contributed in the preparation of the Annual Report *Kharif*-2021 and helped in achieving the set targets.

Ohm

(Amaresh Chandra) Director ICAR-IGFRI,Jhansi(UP)

PREFACE

The Annual Report (2021-22, Part I–*Kharif*-2021) embodies the results of various research trials conducted in the areas of forage crop improvement, production and protection with the view to develop and test the technologies for better quality/quantity of herbage in different agro climatic situations. This report is the outcome of sincere efforts made by all contributing scientists and staff at the Coordinating Unit and AICRP-FCU Centers. The trials and activities were

successfully conducted as per the technical programme fixed for *Kharif*-2021. The forage crops tested during the period under report, included forage cereals and legumes adaptable to a wide range of agro-ecological regions of the country. The report is divided into several chapters, which include Crop Improvement, Crop Production, Crop Protection, Breeder Seed Production etc. The results of multi-locational evaluation of newly developed genetic material for single and perennial forage species are compiled in Crop Improvement chapter. The trials presented in Crop Production chapter focus on bio-fortification of fodder crops, micronutrient management, PGRs and micronutrients for sorghum, silage production in polybags, Precision nitrogen management in forages and nitrogen and cutting management in pearl millet varieties as well as agronomical trial for AVT entries. The chapter on crop protection deals with monitoring of pest and disease dynamics, evaluation of pest/disease resistance level in important Kharif forage cropsviz., Pearlmillet, Sorghum, Maize, Cowpea, Ricebean etc. as well as generation of technologies for pest management. The information on breeder seed production against the DAC indent is also provided in Breeder Seed Production chapter. Weather data from coordinating and voluntary centers have also been compiled to correlate the growth and yield of forage crops with weather parameters at different sites during crop period. Other chapters include details of in-house breeding activities, other activities etc.

The contribution and sincere efforts made by each and every member of the team and their associates at the centers deserve appreciation and is gratefullyacknowledged.

My colleagues at Project Coordinating unit, Dr. R. K. Agrawal, Principal Scientist (Agronomy), Dr. Nitish R. Bhardwaj, Scientist (Plant Pathology)and technical officers, Shri H. K. Agarwal and Shri R.S. Patel,provided support in distribution of seed/planting material, analysis and tabulation of data of trials conducted at various locations. Their contributions are thankfully acknowledged. The efforts of Smt. Priyanka Dixit and Shri Premkushwaha in final report preparation are sincerely acknowledged.

The administrative support and cooperation received from Dr. Amaresh Chandra, Director, IGFRI during the period is thankfully acknowledged. I also record my sincere thanks to colleagues at IGFRI for their kind support.

Meeting all the targeted activities would not have been possible without the active leadership, support, guidance and encouragement received from Dr. T. Mohapatra, Secretary DARE & DG, ICAR; Dr. T.R. Sharma, DDG (CS); Dr. R. K. Singh, ADG (FFC); Dr. D.K.Yadava, ADG (seed); Dr A K Tyagi ADG (AN&P) and Dr.Ishwar Singh, Principal Scientist (FFC), ICAR. Eachand every one in the team at AICRP on Forage Crops & Utilization gratefully acknowledges their guidance and support.

CONTENTS

Executive Summary	
State-Wise zones - Coordinating Centers and Testing Locations	
Entries Code with Name and Contributors-Kharif-2021	

CHA	APTER 1: FORAGE CROP IM	PROVEMENT	1-137	
MAIZ	ZE			
1.	IVTM	Initial Varietal Trial in Forage Maize	4 20	
2.	AVTM-1	First Advanced Varietal Trial in Forage Maize	1-39	
3.	AVTM-2	Second Advanced Varietal Trial in Forage Maize	40.46	
4.	AVTM-2 (Seed)	Second Advanced Varietal Trial in Forage Maize (Seed)	40-46	
PEA	RL MILLET			
5.	IVTPM	Initial Varietal Trial in Forage Pearl Millet	47-69	
6.	AVTPM-1	First Advanced Varietal Trial in Forage Pearl Millet	47-09	
7.	AVTPM-2	Second Advanced Varietal Trial in Forage Pearl Millet	70-82	
8.	AVTPM-2 (Seed)	Second Advanced Varietal Trial in Forage Pearl Millet (Seed)	70-02	
COV	VPEA			
9.	IVTC	Initial Varietal Trial in Forage Cowpea	83-101	
10.	AVTC-1	First Advanced Varietal Trial in Forage Cowpea	03-101	
RICE	EBEAN			
11.	IVT Rice bean	Initial Varietal Trial in Forage Rice bean	102-105	
DINA	ANATH GRASS	•		
12.	AVT-1 Dinanath Grass	Advanced Varietal Trial in Dinanath Grass	106-111	
13.	AVT-2 Dinanath Grass (Seed)	Advanced Varietal Trial in Dinanath Grass (Seed)	100-111	
CEN	CHRUS CILIARIS			
14.	VT Cenchrus ciliaris -2019	Varietal Trial in Cenchrus ciliaris (Perennial)	112-118	
CEN	CHRUS SETIGERUS			
15.	VT Cenchrus setigerus -2019	Varietal Trial in Cenchrus setigerus (Perennial)	119-123	
BAJF	RA NAPIER HYBRID		•	
16.	VTBN-2019	Varietal Trial in Bajra Napier Hybrid (Perennial)	124-137	
CH	APTER 2: FORAGE CROP PR	RODUCTION	138-206	
Α.	COORDINATED TRIALS		138-164	
1.	K-20-AST-1a	Response of fodder crops to micronutrient management	138-146	
2.	K-20-AST-1b	Yield enhancement and bio-fortification of Kharif forages with PGRs and micronutrients	147-154	
3.	K-20-AST-7	Effect of nitrogen and cutting management on performance of forage pearl millet varieties	155-164	
B.	LOCATION SPECIFIC TRIALS		165-174	
4.	K-20-AST-3	Optimizing the feedstuffs for air evacuating method of silage production in polybags	165-168	
5.	K-20-AST-6	Precision nitrogen management for enhancing fodder yield and nitrogen use efficiency in forages	169-170	
6.	K-20-AST-5	Evaluation of promising fodder grass varieties under shade conditions	171-173	
7.	R-19-AST-5	Standardization of Magnesium nutrition in Bajra Napier Hybrid	174	

	AVT-2 TRIALS		175-206			
8.	K-21-AST-1	Second Advanced Varietal Trial-2 in Forage Pearl millet (Agronomy)	175-190			
9.	K-21-AST-2	Effect of nitrogen levels on forage yield of promising entries of forage maize (AVTM-2) (Agronomy)	191-200			
10.	K-21-AST-3	Effect of nitrogen levels on forage yield of promising entries of Dinanath Grass (Agronomy)	201-206			
CH	APTER 3: FOR	RAGE CROP PROTECTION	207-261			
1.	PPT-1	Monitoring of diseases and insect pests in <i>Kharif</i> forage crops	207-221			
2.	PPT-2	Evaluation of <i>Kharif</i> forage crops breeding materials for prevalent diseases and insect pests under natural conditions	222-236			
3.	PPT-25	Valiation of best treatments of trial entitled Non chemical management of Helminthosporium leaf blight in fodder maize	237			
4.	PPT-26	Management of leaf blast in forage pearl millet	238-240			
5.	PPT-27	Management of invasive insect-pest fall army worm, Spodoptera frugiperda L. on Forage Maize	241-242			
6.	PPT-28	Assessment of crop losses due to diseases and insect-pests in forage Cowpea	243-246			
7.	PPT-29	-29 Eco friendly management of Zonate leaf spot of Sorghum				
8.	PPT-30	Management of root rot and wilt in cowpea				
9.	PPT-31	Estimation of yield losses due to insect-pests in fodder sorghum	250-256			
10.	PPT-32	Estimation of yield losses due to foliar diseases (anthracnose, gray leaf spot and zonate leaf spot) in fodder sorghum	257-261			
	-		257-261 262-266			
HA	-	zonate leaf spot) in fodder sorghum				
CHA SPE	PTER 4: BREE	zonate leaf spot) in fodder sorghum EDER SEED PRODUCTION	262-266			
SHA SPE	PTER 4: BREE CIAL TRIALS 1 Bio mass lin	zonate leaf spot) in fodder sorghum EDER SEED PRODUCTION es	262-266 267-284			
SPE High	PTER 4: BREE CIAL TRIALS In Bio mass lin Implasm Evalu	zonate leaf spot) in fodder sorghum EDER SEED PRODUCTION es ation	262-266 267-284 267-277			
SPE High Ger	PTER 4: BREE CIAL TRIALS 1 Bio mass lin mplasm Evalu RAGE TECHN	zonate leaf spot) in fodder sorghum EDER SEED PRODUCTION es ation OLOGY DEMONSTRATIONS	262-266 267-284 267-277 278-284			
SPE High Ger FOI	PTER 4: BREE CIAL TRIALS In Bio mass lin Implasm Evalu RAGE TECHNO HOUSE BREE	zonate leaf spot) in fodder sorghum EDER SEED PRODUCTION es ation OLOGY DEMONSTRATIONS DING	262-266 267-284 267-277 278-284 285			
SPE High Ger FOI IN H	PTER 4: BREE CIAL TRIALS 1 Bio mass lin mplasm Evalu RAGE TECHN	zonate leaf spot) in fodder sorghum EDER SEED PRODUCTION es ation OLOGY DEMONSTRATIONS DING ES	262-266 267-284 267-277 278-284 285 286-303			
SPE High Gerr FOI IN I	PTER 4: BREE CIAL TRIALS I Bio mass lin mplasm Evalu RAGE TECHN HOUSE BREEI HER ACTIVITII	zonate leaf spot) in fodder sorghum EDER SEED PRODUCTION es ation OLOGY DEMONSTRATIONS DING ES	262-266 267-284 267-277 278-284 285 286-303 304-340			
SPE High Ger FOI IN H OTI WE	PTER 4: BREE CIAL TRIALS 1 Bio mass lin mplasm Evalu RAGE TECHN HOUSE BREEI HER ACTIVITII ATHER REPO PENDICES	zonate leaf spot) in fodder sorghum EDER SEED PRODUCTION es ation OLOGY DEMONSTRATIONS DING ES RT	262-266 267-284 267-277 278-284 285 286-303 304-340 341-357			
SPE High Ger FOI IN H OTI WE	PTER 4: BREE CIAL TRIALS DESCRIPTION DESCR	zonate leaf spot) in fodder sorghum EDER SEED PRODUCTION es ation OLOGY DEMONSTRATIONS DING ES RT Forage Crop Improvement Trials at a Glance Kharif-2021	262-266 267-284 267-277 278-284 285 286-303 304-340 341-357 A - B			
SPE High Ger FOI IN I OTI WE	PTER 4: BREE CIAL TRIALS 1 Bio mass lin mplasm Evalu RAGE TECHN HOUSE BREEI HER ACTIVITII ATHER REPO PENDICES	zonate leaf spot) in fodder sorghum EDER SEED PRODUCTION es ation OLOGY DEMONSTRATIONS DING ES RT	262-266 267-284 267-277 278-284 285 286-303 304-340 341-357 A - B			

EXECUTIVE SUMMARY

The report provides compilation of the results of the coordinated multi-location trials conducted on crop improvement, crop production, crop protection as well as the breeder seed production, technology demonstrations, tribal sub-plan activities of the different forage crops during Kharif 2021 at different centers in the country. Weather data at different centers are also reported to correlate the growth and yield of forage crops as well as disease prevalence with weather parameters during crop period. Results of other activities carried out by the staff of AICRP units, in-house breeding, research guidance, teaching, extension activities etc. are also included.

A. FORAGE CROP IMPROVEMENT

In Kharif 2021, multi location trials were conducted across the country to identify the suitable entries for different zones and at national level. Various parameters were considered which includes green and dry forage yield (GFY, DMY), crude protein yield (CPY), crude protein (CP), ADF, NDF, IVDMD, per day productivity, plant height, leafiness etc.

A total of 17 multi locational trials comprising of test entries along with their respective checks were conducted at 34 locations in the country. It included 13 trials under annual and 4 perennial trials. The annual crops include fodder maize, fodder pearl millet, fodder cowpea, fodder rice bean, Dinanath grass, whereas under the perennial system, *Cenchrus ciliaris*, *C. setigerus*, BxN hybrid and *Stylosanthes* were evaluated. A total of 188 trials were allocated out of which data were received from 181 trials making a success rate of 97.07 %. A total of 88 entries including 57 annual and 31 perennial along with national and zonal checks were evaluated.

The results led to identification of promising entries which have recorded their superiority with respect to best zonal/national check. The summarized results of different cultivated annual and perennial forage evaluation trials are as below:

Forage Maize

In Initial Varietal Trial in Forage Maize (IVTM), fourteen (14) entries along with three national checks *viz.*, African Tall, J-1006 and COHM-8 were evaluated at 23 locations including 4 each in hill, south and 5 each in north-west, north-east and central zones. For green and dry forage yield, entries CMH-12-686, PJHM-1, MFM-18-2, IIMFC-2 and ADFM-2 showed superiority over the best check by a margin of more than 5% in one zone or at national level. These entries also showed good performance for per day productivity and crude protein. Other entries were either marginally superior or inferior to checks. For crude protein yield, at all India level, entry CMH-12-686 (8.0 q/ha) was best followed by PJHM-1 (7.8 q/ha). The best performer in check category was African Tall (7.3 q/ha). For crude protein, entry PJHM-1 ranked first in hill, entry CMH-12-686 in CZ, entry IIMFC-2 in NEZ. Entry CMH-12-686was best performer for IVDMD followed by ADFM-2.

In **First Advance Varietal Trial in Forage Maize** (**AVTM-1**), six entries along with three national checks *viz.*, African Tall, J-1006 and COHM-8 were evaluated at 23 locations comprising 4 locations each in hill, south and 5 each in north-west, north-east and central zones. For green forage yield (GFY), entry HQPM-28 in HZ, CZ and entry PFM-13 in CZ and for dry matter yield (DMY), entry HQPM-28 in HZ, NWZ and CZ; entry DFH-2 in NWZ showed superiority over the best check.

For per day productivity entry HQPM-28 was best for both green and dry fodder. For crude protein yield (CPY), entry DFH-2 ranked first for NW, HQPM-28 for central, south as well as at all India level. For crude protein, entry PMC-

11 was best performer in NE zone, entry HQPM-28 for south zone. At all India level, entries PFM-13 and PMC-11 and national check African Tall were joint best performers (8.6%).

Second Advance Varietal Trial in Forage Maize (AVTM-2) comprising of one entry PFM-12 along with three national checks *viz.*, African Tall, J-1006, COHM-8 was conducted at 11 locations (5 in north-west zone and 6 in central zone). For green fodder yield, dry matter yield and crude protein yield, National check J-1006 was top ranked. For crude protein (%), National check African Tall was top ranked

Second Advance Varietal Trial in Forage Maize- seed (AVTM-2 seed) comprising of one entry PFM-12 along with three national checks *viz.*, African Tall, J-1006, COHM-8 was conducted at 6 locations (2 in north-west zone and 4 in central zone). National check African Tall was top ranked in NW zone whereas Check COHM-8 top ranked for central zone as well as combining both zones.

FORAGE PEARL MILLET

An **Initial Varietal Trial in Forage Pearl Millet (IVTPM)** comprising of eight entries along with two national checks *i.e.* Giant Bajra and RBB-1 and respective zonal checks was conducted at 19 centers(5 in NW, 4 in NE, 4 in south zone and 6 in central zone).

For GFY, entry JPM 18-71 in NWZ, NEZ, SZ, at all India level; entry AFB-54 in NWZ, at all India level; entry ADV175020 in NWZ, NEZ, SZ, at all India level; entry FSB2021-1 in NWZ, NEZ, SZ at all India level, entry FBL-7 in NEZ, at all India level, entry FBL-6 in NEZ, at all India level showed superiority over the best check by a margin of more than 5%. In other cases entries were either marginally superior or inferior over the best check.

For DMY, entry JPM 18-71 in NEZ, at all India level; entry AFB-54 in NWZ, at all India level; entry ADV175020 in NWZ, NEZ, CZ, at all India level; entry FSB2021-1 in NWZ, NEZ, SZ, at all India level. Entry FBL-7 in SZ, at all India level. Entry FBL-6 in NEZ, SZ, at all India level showed superiority over the best check by a margin of more than 5%. In other cases entries were either marginally superior or inferior over the best check. For green and dry forage per day productivity, entry AFB-54 was best performer. For crude protein yield (q/ha), AFB-54 in NWZ, JPM-18-71 in NEZ, ADV175020 in CZ, south zone were best performers. At all India level, entry ADV175020 was best (7.6q/ha) followed by JPM-18-71 (7.1q/ha) and check RBB-1 (7.0q/ha). For crude protein content, AFB-45 and ADV175020 in NWZ, FBL-7 in NEZ, ADV175020 in CZ, entry JPM-18-71 in south zone were best performers. At all India level, entry JPM-18-71 (8.2 q/ha) was best followed by check Giant Bajra (8.0%). For other quality parameters, entry AFB-45 for ADF, check Giant Bajra for NDF was superior. Entry FBL-7 ranked first for IVDMD.

In **First Advanced Varietal Trial on Forage Pearl Millet (AVTPM-1)**, five entries along with two national checks *i.e.* Giant Bajra and RBB-1 and respective zonal checks were evaluated at 19 locations comprising of 4 situated in south zone, 5 in NW, 4 in NE, 6 in central zone. For GFY, entry 16ADV0111 in NWZ, NEZ, CZ, SZ, at all India level; entry JPM-18-37 in NWZ, SZ, at all India level; entry FBL-4 in SZ, at all India level; entry TSFB-1610 in SZ, at all India level; entry PHFB-5 at all India level showed superiority over the best check by a margin of >5.0%. In other cases entries were either marginally superior or inferior over the best check.

For DMY, entry 16ADV0111 in NWZ, NEZ, CZ, SZ, at all India level, entry JPM-18-37 in NWZ, NEZ, CZ, SZ, at all India level; entry FBL-4 in SZ; entry TSFB-1610 in NWZ, SZ, at all India level; entry PHFB-5 at all India level showed superiority over the best check by a margin of >5.0%. For per day productivity entry JPM-18-37 ranked first for both green and fodder production. For CPY, entry TSFB-1610 in CZ, entry 16ADV0111 in NEZ, SZ and at all India level were best performers. For crude protein content, zonal check AFB-9-1 top ranked in NWZ, BAIF Bajra in CZ, Moti Bajra in SZ, whereas national check Giant Bajra top ranked in NEZ and at all India level. For other quality parameters, entry FBL-4 ranked first for ADF and IVDMD whereas RBB-1 ranked first for NDF.

In Second Advanced Varietal Trial in Forage Pearl Millet (AVTPM-2), four entries along with two national checks *i.e.* Giant Bajra and RBB-1 and respective zonal checks were evaluated at 19 locations comprising of 4 in south zone, 5 in NW, 4 in NE, 6 in central zone. For GFY, entries 16ADV0055 andJPM-18-7 in NWZ, and at all India level, entry Dev-1 in NWZ, SZ, and at all India level were superior over the best check by a margin of >5.0%. For DMY, entries 16ADV0055 in NWZ, CZ, and at all India level; entry JPM-18-7 in NWZ and at all India level; entry Dev-1 in SZ, CZ and at all India level were superior over the best check by a margin of >5.0%. For per day productivity green and dry fodder), entry JPM-18-7 ranked first. For leaf stem ratio, Dev-1 first ranked first. For CPY (q/ha), entry JPM-18-7 in NWZ, Dev-1 in NEZ, CZ, SZ and at all India level ranked first. For crude protein content, zonal Check AFB-3 in NWZ, APFB-9 in NEZ, entry Dev-1 in CZ, national check Giant Bajra at SZ and at all India level ranked first. For other quality parameters, entry Dev-1 followed by 16ADV0055 for ADF and IVDMD; 16ADV055 followed by Dev-1 for NDF performed better.

In **Second Advanced Varietal Trial (seed) Forage Pearl Millet (AVTPM-2 Seed),** four entries along with two national checks *i.e.* Giant Bajra and RBB-1 and respective zonal checks were evaluated at 9 locations (3 in south zone, 2 in NW, 2 in NE, 2 in central zone). For seed yield zonal check AFB-3 in NWZ, entry 16ADV0055 in NEZ, JPM-18-7 in CZ, Dev-1 in SZ and JPM-18-7 at all India level ranked first. The superiority in SZ over the best check was 26.1% for Dev-1, 23.6% for JPM-18-7 and 11.6% for 16ADV0055. At all India level also entries JPM-18-7 (13.2%), Dev-1 (7.8%) and 16ADV0055 (2.4%) were superior over the best check.

FORAGE COWPEA

In **Initial Varietal Trial on Forage Cowpea (IVTC)**, eight entries along with two national checks *i.e.* Bundel Lobia-1 and UPC-5286; and respective zonal checks were evaluated at 26 locations (3 in hill, 4 in north-west, 6 in central and 6 in south zone while 7 in north-east zone). Entry UPC-21-1 was superior by a margin of 6.0 % for GFY and 6.7% for DMY over the best check in NEZ. For dry matter yield in central zone, MFC-18-8, MFC-18-10 and PFC-40 were superior over the best check a margins of 11.5%, 14.0% and 7.9% respectively in CZ. In all other zones and all India level, entries were either marginally superior or inferior to best check in the respective zones. For green and dry fodder per day productivity, entry UPC-21-1 ranked first followed by entry MFC-18-8. For CPY, entry UPC21-1 in NWZ, and NEZ, MFC 18-10 in SZwere top ranked. For crude protein content, at all India level, entry MFC-18-8 was best performer (16.2%) followed by entry PFC-40 and national check UPC-5286 (15.5%).

In **First Advance Varietal Trial Forage Cowpea** (AVTC-1), two entries along with two national checks namely Bundel Lobia-1 and UPC-5286 and respective zonal checks were evaluated at 6 locations in south zone and 7 locations in NEZ. National or zonal checks showed superiority for GFY, DMY, per day productivity. For crude protein yield, entry HFC-17-9 in SZ, and national check UPC-5286in NEZ ranked first. For crude protein content, entry HFC-17-9 ranked first in SZ (20.7%)while national check UPC 5286 ranked first in NEZ. Combining both zones, entry HFC 17-9 ranked first (17.1%) as compared to best check UPC 5286 (16.7%). For ADF, NDF and IVDMD, national check Bundel Lobia-1 was best performer.

FORAGE RICE BEAN

In **Initial Varietal Trial Forage on Rice Bean (IVTRB),** four entries along with two national checks *i.e.* Bidhan-3 and Bidhan-2 were evaluated at 10 locations. For green and dry forage yield, entry JRBJ 12-9 ranked first showing superiority of 12.3 % for GFY and 12.4% for DMY as compared to best check. For green fodder per day productivity, entry JOR-21-1 and JRBJ-12-9 ranked first, whereas for dry fodder per day productivity, entry JRBJ-12-9 ranked first. For leafiness, entry JRBJ-12-9 ranked first. For crude protein yield, entry JRBJ-12-9 ranked first (9.9 q/ha) followed by entry BRB1-L13P5 (8.7q/ha), JOR-21-1 (8.6 q/ha) as compared to best check Bidhan -2 (8.4 q/ha). For crude protein, entry BRB1-L13P5 was best (16.2%), followed by entry JRBJ-12-9 (15.9%), JOR-21-1 (15.6%) as compared to best check Bidhan -2 (14.9%).

FORAGE DINANATH GRASS

Advanced Varietal Trial-2 in Forage Dinanath Grass(AVT-2 Dinanath Grass) comprising of four entries with one national check *viz.*, Bundel Dinanath-2 was conducted at 8 locations. Check Bundel Dinanath-2 performed best for both green and dry matter yield as well as per day productivity. In quality parameters, for crude protein yield (q/ha), check Bundel Dinanath-2 ranked first followed by JHD 19-4. For CP content, entry BAU-DN-103-18-2 ranked first with value of 8.3 % followed by BAU-DN-110-18-2 (8.1%) as compared to 7.1 % in check Bundel Dinanath-2. For other quality parameters, entry BAU-DN-109-8 ranked first for ADF, NDF and IVDMD.

Advanced Varietal Trial-2 in Forage Dinanath Grass Seed (AVT-2-Seed-Dinanath Grass) comprising of four entries with one national check *viz.*, Bundel Dinanath-2 was conducted at 5 locations. Entry JHD-19-4 showed superiority over the best check by a margin of 7.7% for seed yield. All other entries were below par over the best check.

CENCHRUS CILIARIS-2019: (PERENNIAL) – 3rd year

The trial was established in 2019 with 6 entries along with 3 checks (CAZRI-75, IGFRI 3108, and IGFRI-67-365) in three zones. As 3 years have been completed, the entries are now decoded. The performance in third year is as follows. National check IGFRI-67-365 performed best for green fodder yield in all zones and also at all India level. For dry matter yield, entry IG-96-414 was superior over the best check by a margin of 14.1% in NWZ, similarly in SZ, entry RCCB-05 was superior by a margin of 8.4% over the best check. In CZ and at all India level, the national check IG-67-365 was best. For crude protein yield, check IGFRI-67-365 was best whereas for crude protein content, entry RCCB-06 was best (7.9%) followed by RCC-2016-8 (7.6%) and national check IGFRI-67-365 (7.4%). For ADF, national check CAZRI-75 was best whereas entry RCCB-06 performed best for NDF and IVDMD followed by national check CAZRI-75.

CENCHRUS SETIGERUS-2019 (PERENNIAL) – 3rd year

The trial was established in 2019 with four entries and three national checks (CAZRI 76, TNCS-265 and IG-96-706) at 12 locations across the country. As 3 years have been completed, the entries are now decoded. The performance in third year is as follows. For green fodder yield and dry matter yield, national checks performed best in all zones and at national level. National check TNCS-265 in NWZ, IG-96-706 in south zone and CAZRI-76 in CZ and at all India level were top ranked. For production potential, national check CAZRI-76 ranked first. For leafiness, national check IG-96-706 was top ranked. For crude protein content, entry RCSB-08ranked first (7.4%) followed by entry IG-97-447 (7.2%) and entry RCSB-09 (7.0%) and national check CAZRI-76 (6.9%). For crude protein yield, national check TNCS-265 ranked first.

VTBN-2019: BAJRA NAPIER HYBRID (PERENNIAL) - 3rd year

The trial was established in 2019 with fourteen entries and two national checks (CO-BN-5, BNH-10) at 19 locations across the country. It included 2 locations in hill, 3 in NW, 3 in NE, 5 in central 4 in south zone. The entries are in coded form and will be decoded after completion of trial.

STYLOSANTHES

The trial failed as most of the entries failed to germinate at many locations.

B. FORAGE CROP PRODUCTION

The programme on forage crop production was conducted at 42 locations during Kharif season. In total 10 experiments were conducted, out of which 4 in coordinated, 3 AVT trials and 3 in location specific mode.

Research aspect consisted of bio-fortification of annual cereal fodder crops, response of fodder crops to micronutrient management, effect of PGRs and micronutrients on sorghum, feedstuffs for air evacuating method of silage production in polybags, Precision nitrogen management for in forages and nitrogen and cutting management on performance of forage pearl millet varieties. Besides above, advance varietal trials to evaluate the response of promising entries of pearl millet, maize and Dinanath grass to nutrient supplementation was also conducted and reported.

K-20-AST-1a: Response of fodder crops to micronutrient management

A trial was initiated during Kharif 2020 at five locations i.e., Rahuri, Bikaner, Imphal, Ranchi and BUAT Banda, to study the effect of PGRs and micronutrients on growth, yield and quality of Maize. In Rahuri and Banda the trial was conducted on maize, whereas, at Bikaner, Imphal, Ranchi BxN hybrid was tested. The results indicated that GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹+ two foliar sprays of grade II @ 1% at 30 and 45 DAS recorded significantly yield.

K-20-AST-1 (b): Yield enhancement and bio-fortification of *kharif* forages with PGRs and micronutrients

A trial was initiated at four locations to study the effect of PGRs and micronutrients on growth, yield and quality of sorghum. On location mean basis soil application of 5 kg Zn \pm 2

kg B/ha + triacontanol (10 ppm) as foliar spray at 30 DAS recorded significantly higher green fodder (464.1 q/ha), dry matter (122.7 q/ha) and crude protein yield (9.8 q/ha).

K-21-AST-7: Effect of nitrogen and cutting management on performance of forage pearl millet varieties

Experiment was conducted at Hyderabad, Raipur, Pusa, Ludhiana, Jabalpur and Varanasi to study the effect of nitrogen and cutting management on yield and economics of new pearl millet varieties for prolonged quality fodder availability. Moti Bajra with application of 120 kg/ha nitrogen and three cuts at different intervals *i.e.* first at 50 days after sowing, second at 35 after first cut and last cut at 50% flowering proved best.

K-20-AST-3: Optimizing the feedstuffs for air evacuating method of silage production in polybags

Field experiment was conducted at Coimbatore to identify suitable fodder crops and additives for polybag method of silage production. Higher quality silage with acetic acid content of 2.5 percent and lactic acid content of 9.0 per cent was produced from fodder maize by air evacuation method with molasses 1%.

K-20-AST-6: Precision nitrogen management for enhancing fodder yield and nitrogen use efficiency in forages

Production of fodder maize was better with 150 kg N/ha (40% N basal) + remaining based on LCC 5. It recorded 479.12 q green and 137.45 q dry matter yield per hectare.

K-20-AST-5: Evaluation of promising fodder grass varieties under shade conditions

Experiment was laid out at Vellayani centre to assess the influence of different shade levels on the growth, quality and yield of promising fodder varieties. Highest GFY (2418.7 q/ha) and DFY (604.7 q/ha) were recorded by CO-5 under open condition. Under 25 % and 50 % shade levels, highest GFY and DFY were recorded by guinea grass var. Sulabha.

R- 19-AST-5: Standardization of Magnesium nutrition in Bajra Napier Hybrid

Field experiment was laid out at Vellayani to assess the impact of varying doses and frequency of application of magnesium on the growth, yield and quality attributes of BN hybrid. Significantly superior values of green fodder (1891.3 q/ha) and dry matter yields (473.0 q/ha) were recorded with application of 100 kg MgSO₄/ha once in 6 months.

AVT-2 Trials

K-21-AST-1: Second Advanced Varietal Trial in Forage Pearl Millet (AVTPM-2-1)

experiment was conducted to find out the response of four promising entries and three checks of pearl millet under three level of nitrogen application i.e. 30, 60 and 90 kg/ha. The study was undertaken at ten locations in four zones i.e, North West, North East, Central and South Zone. In North West and North East Zone, entry Dev-1 proved superior. In south zone JPM-18-7 produced maximum green, dry as well as crude protein yields. In central zone, entry 16ADV0055 proved higher yielder. Herbage yield and crude protein yield increased consistently with increasing level of nitrogen up to 90 Kg N/ha.

K-21-AST-2: Effect of nitrogen levels on forage yield of promising entries of forage maize

A field trial AVTM-2 was conducted to find out the response of one promising entry and two checks of maize under four level of nitrogen application i.e. 40, 80, 120 and 160 kg/ha. The study was undertaken at three locations in North West Zone and two locations in Central Zone

In central zone the entry PFM-12 (661.7q GFY/ha) out yielded checks COHM and J-1106.In NW zone entry PFM-12 did not perform well. Herbage and crude protein yield increased consistently with increasing level of nitrogen up to 160 Kg N/ha.

K-21-AST-3: Effect of nitrogen levels of forage yield of promising of Dinanath grass

A field trial AVTD-2 was conducted to find out the response of four promising entries of Dinanath grass to three graded doses of nitrogen (30, 60 and 90 kg N/ha). On locational mean basis the national check produced maximum green and dry forage yields of 262.4 and 52.56q/ha, respectively. herbage yield and crude protein content and yield increased consistently with increasing level of nitrogen up to 90 Kg N/ha.

C. FORAGE CROP PROTECTION

The programme on forage crop protection was conducted at 6 locations. In total, 11 trials were conducted. Research aspect consisted of monitoring of pests and diseases in kharif forage crops, evaluation of kharif breeding material for pest and disease resistance, development of suitable crop protection technologies for pests and diseases of economic importance and assessment of yield losses due to pests and diseases in different fodder crops. The trial wise report is summarized below.

PPT 1: Monitoring of diseases and insect pests in kharif forage crops

During *kharif* 2020, study of population dynamics of important diseases and insect pest in *kharif* forages (sorghum, maize, bajra, rice bean, cowpea and Bajra X Napier hybrids) was carried out at different locations.

At Ludhiana, in Pearl millet, leaf blast severity was 57.3%. Downy mildew incidence was 27.3%. In sorghum, grey leaf spot severity was 46.3%. Anthracnose severity was 43.6%. In maize, leaf blight severity was 44%. At Palampur, wilt-root rot complex (75% incidence) was the major diseases of cowpea. In maize, leaf bight (20%) was the major disease. Sorghum was severely infected with zonate leaf spot (60% severity). Leaf blast (30% severity) in Bajra was observed. At Rahuri, incidence of fall army worm in maize was moderate to high (29.8 to 74.8%). Maydis leaf blight infection was 11.1 to 45.3%. In cowpea, low to moderate level of infestation of aphids per plant (ranged-2.4 to 7.6 score) was noticed. The incidence of yellow mosaic virus was low to moderate (2.2 to 23.6%). At Bhubaneswar, wilt-root rot complex (24% incidence) and yellow mosaic virus (28% severity) were the major diseases of cowpea. In Maize, leaf bight (24%) and Banded leaf and sheath blight (16%) were the major diseases along with fall armyworm damage of 44%. Bajra was infected with leaf blast having 20% severity. In Rice bean, leaf defoliators (18% damage), root rot (28% incidence) and yellow mosaic virus (14% severity) were observed.

At Coimbatore, in sorghum, maximum anthracnose severity observed was 25.3%. In maize, maximum damage of fall armyworm was 30.4%. In cowpea, aphid incidence ranged from 7.33 and 10.66 aphids per plant. **At Jhansi,** Defoliators (44.5% damage) were major insectpests of cowpea. In Maize, fall armyworm damage was 51.3%. Bajra was severely infected with leaf blast with severity of as high as 59.8 %. Sorghum was severely infected with zonate leaf spot having 62.7% disease severity.

PPT-2: Evaluation of kharif breeding materials for their resistance to diseases and insect-pests under natural conditions

Various contributed entries along with national and zonal checks were screened for the occurrence of diseases and insect pests under natural conditions.

IVT in Pearl Millet: At Rahuri, all the entries were resistant to moderately resistant against blast disease. At Ludhiana, all entries were found susceptible to leaf blast. At Bhubaneswar, all the entries were resistant to moderately resistant against blast and defoliators except AFB-54 and RBB-1. At Jhansi, all the entries were resistant to moderately resistant against blast. **AVT –1 in Pearl Millet:** At Rahuri, all the entries were resistant to moderately resistant against blast disease. At Ludhiana, all entries showed susceptible disease reaction to leaf blast. At Jhansi, all the entries were resistant to moderately resistant against blast disease. At Ludhiana, all entries were resistant to moderately resistant against blast. At Bhubaneswar, all the entries were resistant to moderately resistant against blast. At Bhubaneswar, all the entries were resistant to moderately resistant against blast and defoliators. At Jhansi, all the entries were resistant to moderately resistant against blast.

IVT in cowpea: At Rahuri, entries HFC 17-7, MFC-18-10 and PFC 40 were resistant to aphids, whereas PFC 36, UPC-5286 and TSFC-20-06 were moderately resistant. The entries TNFC 1910, MFC-18-8 and PFC 40 were found resistant to yellow mosaic virus. At Palampur, entries PFC 40 and TSFC-20-06 were found moderately resistant to root rot and wilt complex At Ludhiana, all the entries were found resistant to cowpea mosaic virus except HFC 17-7, PFC 40 and TSFC-20-06. At Coimbatore, all the entries were resistant to moderately resistant to aphids and yellow mosaic virus infestation.**AVT-1 in Cowpea:** At Bhubaneswar, all the entries were found resistant to moderately resistant to aphid, root rot and mosaic except MFC-16-8. At Coimbatore, all the entries were resistant to aphids and yellow mosaic virus infestation.

IVT in Maize: At Rahuri, all the entries were found resistant to moderately resistant to fall armyworm except IIMFC 1, ADC-2 and PJHM-1 which were moderately susceptible. At Palampur, all the entries were resistant to moderately resistant against *Turcicum* leaf blight. At Ludhiana, all entries showed resistant to moderately resistant disease reaction to *Maydis* leaf blight. At Bhubaneswar, all the expressed resistant to moderately resistant reaction to leaf blight except Hybrid - FSM2021-1, IIMFC 2, CMH-12-686 showed moderate susceptibility to leaf blight. At Jhansi, the entries ADFM-3, IIMFC 1, IIMFC 2, ADFM-2, MFM-18-27, CMH-12-686, HPFM-11, and MFM-18-2 were found resistant to *Spodoptera frugiperda*.

AVT–1 in Maize: At Rahuri, all the entries were found resistant to moderately resistant to fall armyworm. At Ludhiana, all entries showed moderately resistant disease reaction to leaf blight of maize. At Palampur, all the entries were resistant to moderately resistant against *Turcicum* leaf blight. At Bhubaneswar, all the entries were resistant to moderately resistant against *Turcicum* leaf blight and banded leaf and sheath blight. At Jhansi, the entries PMC-13, PMC-11, COHM-8 were found resistant to *Spodoptera frugiperda*. At Coimbatore, all the entries were found resistant to *Spodoptera frugiperda*.

AVT –2 in Maize: At Rahuri, all the entries were found resistant to moderately resistant to fall armyworm and *Maydis* leaf blight. At Ludhiana, all entries showed moderately resistant disease reaction to leaf blight of maize. At Jhansi, all the tested entries were found resistant to *Spodoptera frugiperda*.

AVT-2 in Dinanath Grass: At Bhubaneswar, all the entries were resistant to moderately resistant to leaf spot and defoliators except BAU-DN-103-18-2 which was found moderately susceptible to both leaf spot and defoliators.

VTCC- *Cenchrus ciliaris*: **At Rahuri,** entries CAZRI 75, IGFRI 3108, RCCB-05were resistant while entries RCCB-06 and IG-96-414were moderately resistant to leaf blight.

VTCS- Cenchrus setigerus: At Rahuri, IG-96-706 (NC) was resistant to leaf blight.

PPT-25: Validation of best treatments of trial entitled "Non chemical management of *Helminthosporium* leaf blight in fodder maize"

The experiment was conducted at Ludhiana. Leaf blight severity was observed very less in plots treated with two foliar sprays of chitosan @ 0.05% at 10 days interval with 19.21% respectively with 55.64% disease control as compared to check (43.31% severity). Higher Benefit cost ratio of 3.69 was obtained in two foliar sprays of chitosan @ 0.05% at 10 days interval than other treatments.

PPT-26: Management of leaf blast in forage pearl millet

The experiment was conducted at Ludhiana, Bhubaneswar, Palampur and Jhansi. Among 11 treatments, at Jhansi, Palampur and Ludhiana, best treatment was T7 [Seed treatment with tebuconazole + trifloxystrobin @ 1 g/kg seed + foliar spray of tebuconazole + trifloxystrobin @ 0.4 g/L]. At Bhubaneswar, best treatment was T10 (seed treatment with tricyclazole @ 0.6 g/kg seed and two sprays of same fungicide @ 0.3 g/l).

PPT-27: Management of invasive insect-pest fall army worm, *Spodoptera frugiperda* L. on Forage Maize

The experiment was conducted at Rahuri, Ludhiana, Bhubaneswar and Jhansi. Among 10 treatments, at all the locations foliar spray of Emamectin benzoate 5 WG @ 0.5gL was the most effective treatment in reducing the infestation of fall army in maize at 10 days after spray.

PPT-28: Assessment of crop losses due to diseases and insect-pests in forage Cowpea

The experiment was conducted at Ludhiana, Bhubaneswar, Palampur, Rahuri and Jhansi. Losses to the tune of 19.25%, 32.98%, 73.02%, 32.14% and 22.94% in green fodder yield were recorded at Ludhiana, Bhubaneswar, Palampur, Rahuri and Jhansi respectively.

PPT-29: Eco friendly management of Zonate leaf spot of Sorghum

The experiment was conducted at Palampur.Among all the treatments, three foliar sprays of propiconazole @ 0.1% was found most effective (65.04% disease control with 18.48% increase in the green fodder yield over control). Among the non-chemical methods, three foliar spray of Tamarlassi @ 10% recorded 49.19% disease control with 12.35% increase in the yield over control.

PPT-30: Management of root rot and wilt in cowpea

The experiment was conducted at Bhubaneswar. The chemical seed treatment with tebuconazole 2DAS @ 1g/kg seed along with basal soil application of *T. viride* @ 4kg/ha enriched in FYM @ 250 kg/ha was found the best which reduced the disease by 58.1% and increased the yield by 17.6% compared to control. Among nonchemical treatments, seed treatment with *T. viride* along with basal application of the same bio agent was found superior recording followed by *P. fluorescens*.

PPT-31: Estimation of yield losses due to insect-pests in fodder sorghum

The experiment was conducted at Rahuri and coimbatore. At Rahuri, overall yield losses in sorghum were estimated to be 43.10%. Yield losses due to shootfly alone were estimated to be around 25.62%. Yield losses due to fall armyworm were estimated to be around 5.22%. Yield losses due to aphids were estimated to be around 20.97%. At Coimbatore, overall yield losses in sorghum were estimated to be 32.23%. Yield losses due to shootfly alone were estimated to be around 15.68%. Yield losses due to fall armyworm were estimated to be around 6.14%

PPT-32: Estimation of yield losses due to foliar diseases (anthracnose, gray leaf spot and zonate leaf spot) in fodder sorghum

The experiment was conducted at Ludhiana, Palampur and Jhansi. At Palampur, maximum green fodder yield loss recorded due to zonate leaf spot was 19%. At Jhansi, maximum green fodder yield loss recorded due to the zonate leaf spot was 16.2%. At Ludhiana, maximum green fodder yield loss recorded due to the diseases (gray leaf spot and anthracnose) was 30%.

D. BREEDER SEED PRODUCTION (Kharif-2021) [Indent Year Kharif 2022]

In *Kharif*-2021, the indent for breeder seed production (Indent year *Kharif*-2022) was received from DAC, Govt. of India for 20 varieties of 6 forage crops *viz.*, fodder maize, fodder pearl millet, fodder cowpea, fodder Gaur, Hedge Lucerne and Sewan Grass. The total indent for breeder seed production was 78.10q. The indent was allotted to Twelve SAUS/ICAR/NGO institutes. Among the quantity allotted for different forage crops, maximum was for forage maize (60.20q) followed by cowpea (15.90 q), pearl millet (1.55 q), fodder Guar (0.25 q), Hedge Lucerne (0.10q) and Sewan Grass (0.10q).

Variety wise scenario indicates that in Forage Maize, 04 varieties were indented and report from 08 centers indicate that the production was more or equal to indented quantity in all 4 varieties. Total production was 81.48 q as against the indent of 60.20 q making a surplus of 21.28 q (35.34%). In Forage pearl millet, indent was received for 6 varieties which were allocated to 5 centers. Production was surplus in GAFB-4, Raj Bajra-1, BAIF Bajra-1, FBC-16, and PCB-165 whereas it met the target in HC-20. Total production was 7.65q as against the indent of 1.55 q thereby making a surplus of 6.10 q (393.55%).In Forage cowpea, indent was received for 7 varieties which were allocated to 7 centers. Production was surplus in EC-4216, MFC-09-1, CL-367, UPC 628, UPC 8705, whereas it met the target in TNFC-0926. The production was deficit in Bundel Lobia-2, where the crop was reported to be damaged due to heavy rain. UAS Bengaluru reported production of 2.00 q seed of cowpea variety MFC-08-14 which was not indented. Total production was 22.75q as against the indent of 15.90q, thereby making a surplus of 6.85 q (43.08%).

In case of Sewan grass, indent of 0.10q was received for one variety RLS-11-50. Production was 11.00 q thereby making a surplus of 10.90q (10900%). In case of fodder guar, indent of 0.25q was received of one variety Bundel Guar-3. Production was nil as crop was reported to be damaged due to heavy rain. In case of hedge Lucerne, indent of 0.10 q was received for one variety TDN 1308 which was produced by TNAU, Coimbatore. ICAR-IGFRI Jhansi also reported production 0.20q seed of Guinea grass variety PGG 518 which was not indented.

Thus variety wise scenario indicates that production was equal or more in 18 varieties and deficit in 2 varieties as compared to indented quantity. The overall breeder seed production in forage crops was 123.18q as against the indent of 78.10q indicating that surplus production was 123.08q or 45.08q (57.72%) higher than the indented quantity.

ALL INDIA COORDINATED RESEARCH PROJECT ON FORAGE CROPS & UTILIZATION ZONE, COORDINATED CENTERS AND TESTING LOCATIONS

		Coordina	ted Centers			Testing Locations	
Zone	S.N.	Location	Establishment	State / Union	S.N.	Location	State/Union
			Year	Territory			Territory
I. Hill State/UT	1.	Palampur, CSKHPKV	1970	Himachal	1.	Almora, ICAR-VPKAS*	Uttarakhand
States = 3				Pradesh	2.	Rajouri, SKUAST-J	J&K
Locations = 5	2.	Srinagar, SKUAS&T-K	2010	Jammu & Kashmir	3.	Bajoura (Kullu), CSKHPKV RRS	HP
II. North West	3.	Ludhiana, PAU	1989	Punjab	4.	Meerut, SVBPUA&T	Uttar Pradesh
States = 5					5.	Ballowal Sankhari, PAU,RRS	Punjab
Locations = 14	4.	Hisar, CCS HAU	1970	Haryana	6.	Avikanagar, IGFRI-RRS*	Rajasthan
	5.	Pantnagar, GBPUAT	1995	Uttarakhand	7.	Jodhpur, ICAR-CAZRI*	Rajasthan
	6.	Bikaner, SKRAU	1995	Rajasthan	8.	Bhilwara Arjia/DFRS,MPUAT	Rajasthan
					9.	Udaipur, MPUAT	Rajasthan
					10.	Pali-Marwar, ICAR-CAZRI-RRS*	Rajasthan
					11.	Jaisalmer, ICAR-CAZRI-RRS*	Rajasthan
					12.	Fatehpur Shekhawati/ARS SKNAU	Rajasthan
					13.	Jalore, SKRAU ARS	Rajasthan
III. East/North States = 9	7.	Ayodhya, ANDUAT	1982	Uttar Pradesh	14.	Umiam (Barapani), ICAR Res. Complex for NEH Region*	Meghalaya
Locations = 11	8.	Ranchi, BAU	1970	Jharkhand	15.	Visva Bharti, Shantiniketan	West Bengal
	9.	Kalyani, BCKV	1972	West Bengal	16.	Medziphema, Nagaland University	Nagaland
	10.	Bhubaneswar,OUAT	1987	Orissa	17.	Sabour, BAU	Bihar
	11.	Jorhat, AAU	1970	Assam			
	12.	Imphal, CAU	2010	Manipur			
	13.	Pusa, RPCAU	2017	Bihar			

		Coordii	nated Centers			Testing Location	S
Zone	S.N.	Location	Establishment Year	State / UT	S.N.	Location	State/Union Territory
IV. Central	14.	Anand, AAU	1970	Gujarat	18.	Kanpur, CSAU&T	Uttar Pradesh
States = 5	15.	Jabalpur, JNKVV	1970	Madhya Pradesh	19.	Jhansi, ICAR-IGFRI*	Uttar Pradesh
Locations = 11	16.	Rahuri, MPKV	1971	Maharashtra	20.	Dhari, JAU	Gujarat
	17.	Urulikanchan, BAIF	1982	Maharashtra	21.	Karjat, RARS, BSKKV	Maharashtra
	18.	Raipur, IGKV	2010	Chhattisgarh	22.	Akola, PDKVV	Maharashtra
					23.	Dapoli, COA	Maharashtra
					24.	Palghar, ARS,DBSKKV	Maharashtra
V. South	19.	Mandya, UAS (B)	1986	Karnataka	25.	Dharwad, ICAR-IGFRI-RRS*	Karnataka
States/UT = 6	20.	Coimbatore, TNAU	1976	Tamil Nadu	26.	Karaikal, PJLNCA & RI,	Pudducherry
Locations = 9	21.	Vellayani, KAU	1971	Kerala	27.	Tirupati/Guntur, ANGRAU	Andhra Pradesh
	22.	Hyderabad, PJTSAU	1970	Telangana	28. 29.	Raichur, UAS, Mattupetty, KLDB	Karnataka Kerala

 $Summary: Zone = 5, \, States/UT = 27, \, Coordinating \, Centers = 22, \, Testing \, Locations = 29$

^{*}ICAR Institute

Entries Code for Kharif-2021

1. IVT	M			4. AV	TM-2 (Seed)		
S.N.	Contributor	Entry name	Code name	S.N.	Contributor	Entry name	Code name
1	IARI RS Dharwad	ADFM-3	IVTM- 1	1	(NC)	J-1006	AVTM-2- S-1
2	IARI, Delhi	AH-1645	IVTM- 2	2	(NC)	African Tall	AVTM-2- S-2
3	IIMR	IIMFC 1	IVTM- 3	3	(NC)	COHM-8	AVTM-2- S-3
4	IARI RS Dharwad	ADC-2	IVTM- 4	4	PAU Ludhiana	PFM-12	AVTM-2- S-4
5	(NC)	African Tall	IVTM- 5	5. IVT	PM		•
ô	Foragen seeds pvt ltd	Hybrid - FSM2021-1	IVTM- 6	S.N.	Contributor	Entry name	Code name
7	IARI, Delhi	PJHM-1	IVTM- 7	1	JNKVV, Jabalpur	JPM-18-71	IVTPM-1
8	(NC)	J-1006	IVTM- 8	2	(ZC-NWZ)	AFB-3	IVTPM-2
9	IIMR	IIMFC 2	IVTM- 9	3	(ZC-NEW)	APFB-9-1	IVTPM-2
10	IARI RS Dharwad	ADFM-2	IVTM- 10	4	(ZC-CZ)	BAIF Bajra 1	IVTPM-2
11	ZARS, Mandya	MFM-18-27	IVTM- 11	5	(ZC-SZ)	Moti Bajra	IVTPM-2
12	TNAU, Coimbatore	CMH-12-686	IVTM- 12	6	PAU, Ludhiana	FBL-7	IVTPM-3
13	CSKHPKV, Palampur	HPFM-11	IVTM- 13	7	PAU, Ludhiana	FBL -6	IVTPM-4
14	ZARS, Mandya	MFM-18-2	IVTM- 14	8	AAU, Anand	AFB-45	IVTPM-5
15	GBPUAT, Pantnagar	DFH -4	IVTM- 15	9	NDUAT, Ayodhya	NDFB-942	IVTPM-6
16	SKUAST-K, Srinagar	KDFM -7	IVTM- 16	10	AAU, Anand	AFB-54	IVTPM-7
17	(NC)	COHM-8	IVTM- 17	11	(NC)	Giant Bajra	IVTPM-8
2. AV	TM-1	<u>.</u>		12	(NC)	RBB-1	IVTPM-9
S.N.	Contributor	Entry name	Code name	13	Advanta Seeds Pvt Ltd	ADV175020	IVTPM-10
1	(NC)	African Tall	AVTM-1- 1	14	(Foragen Seeds)	Hybrid - FSB2021 - 1	IVTPM-11
2	SKUAST-K, Srinagar	KDFM-6	AVTM-1- 2	6. AV	TPM-1		
3	(NC)	J-1006	AVTM-1- 3	S.N.	Contributor	Entry name	Code name
4	PAU, Ludhiana	PFM-13	AVTM-1- 4	1	PAU, Ludhiana	FBL 4	AVTPM-1-1
5	CCSHAU,RS Karnal	HQPM 28	AVTM-1- 5	2	(NC)	RBB-1	AVTPM-1-2
6	GBPUAT, Pantnagar	DFH-2	AVTM-1- 6	3	(ZC-NWZ)	AFB-3	AVTPM-1-3
7	MPUAT, Udaipur	PMC-13	AVTM-1- 7	4	(ZC-NEW)	APFB-9-1	AVTPM-1- 3
8	MPUAT, Udaipur	PMC-11	AVTM-1-8	5	(ZC-CZ)	BAIF Bajra 1	AVTPM-1- 3
9	(NC)	COHM-8	AVTM-1- 9	6	(ZC-SZ)	Moti Bajra	AVTPM-1-3
3. AV	TM-2	-	-	7	PJTSAU, Hyderabad	TSFB-1610	AVTPM-1-4
S.N.	Contributor	Entry name	Code name	8	Advanta Ltd	16ADV0111	AVTPM-1- 5
1	(NC)	J-1006	AVTM-2- 1	9	JNKVV, Jabalpur	JPM 18-37	AVTPM-1- 6
2	(NC)	African Tall	AVTM-2- 2	10	(NC)	Giant Bajra	AVTPM-1- 7
3	(NĆ)	COHM-8	AVTM-2- 3	11	PAÚ, Ludhiana	PHBF-5	AVTPM-1-8
4	PAU Ludhiana	PFM-12	AVTM-2- 4				

1. AVII	M-2			10. AVTC-1					
S.N.	Contributor	Entry name	Code name	S.N.	Contributor	Entry name	Code name		
1	(ZC-NWZ)	AFB-3	AVTPM-2-1	1	HAU, Hisar	HFC17-9	AVTC-1- 1		
2	(ZC-NEW)	APFB-9-1	AVTPM-2-1	2	(NC)	UPC-5286	AVTC-1- 2		
3	(ZC-CZ)	BAIF Bajra 1	AVTPM-2-1	3	(ZC-NEZ)	UPC-628	AVTC-1- 3		
4	(ZC-SZ)	Moti Bajra	AVTPM-2-1	4	(ZC-SZ)	MFC-8-14	AVTC-1-3		
5	JNKVV, Jabalpur	JPM-18-7	AVTPM-2-2	5	(NC)	Bundel Lobia-1	AVTC-1- 4		
6	BAIF, Urulikanchan	BAIF Bajra-7	AVTPM-2-3	6	ZARS Mandya	MFC-16-8	AVTC-1- 5		
7	(NC)	RBB-1	AVTPM-2-4						
8	Advanta Ltd	16ADV0055	AVTPM-2-5	11. IV	T Rice bean				
9	Crystal Corp Ltd	Dev-1	AVTPM-2-6	S.N.	Contributor	Entry name	Code name		
10	(NC)	Giant Bajra	AVTPM-2-7	1	(NC)	Bidhan-2	IVTRB- 1		
8. AVTP	M-2 (Seed)			2	BCKV, Kalyani	BRB1-L13P5	IVTRB- 2		
S.N.	Contributor	Entry name	Code name	3	AAU, Jorhat	JOR-21-1	IVTRB- 3		
1	(NC)	Giant Bajra	AVTPM-2-S-1	4	JNKVV, Jabalpur	JRBJ-12-9	IVTRB- 4		
2	JNKVV, Jabalpur	JPM-18-7	AVTPM-2-S-2	5	AAU, Jorhat	JOR-21-2	IVTRB- 5		
3	BAIF, Urulikanchan	BAIF Bajra-7	AVTPM-2-S-3	6	(NC)	Bidhan-3	IVTRB- 6		
4	(NC)	RBB-1	AVTPM-2-S-4	12. A	VT-2 Dinanath Grass	•	•		
5	(ZC-NWZ)	AFB-3	AVTPM-2-S-5	S.N.	Contributor	Entry name	Code name		
6	(ZC-NEW)	APFB-9-1	AVTPM-2-S-5	1	IGFRI, Jhansi	JHD-19-4	AVT-2-DN-1		
7	(ZC-CZ)	BAIF Bajra 1	AVTPM-2-S-5	2	BAU, Ranchi	BAU-DN-103-18-2	AVT-2-DN-2		
8	(ZC-SZ)	Moti Bajra	AVTPM-2-S-5	3	BAU, Ranchi	BAU-DN-109-8	AVT-2-DN-3		
9	Crystal Corp Ltd	Dev-1	AVTPM-2-S-6	4	NC	Bundel Dinanath-2	AVT-2-DN-4		
10	Advanta Ltd	16ADV0055	AVTPM-2-S-7	5	BAU, Ranchi	BAU-DN-110-18-2	AVT-2-DN- 5		
9. IVTC	•			13. AVT-2 Dinanath Grass (Seed)					
S.N.	Contributor	Entry name	Code name	S.N.	Contributor	Entry name	Code name		
1	(ZC-HZ)	UPC-622	IVTC-1	1	IGFRI, Jhansi	JHD-19-4	AVT-2 DN-S-		
2	(ZC-NWZ)	Bundel Lobia-2	IVTC-1	2	BAU, Ranchi	BAU-DN-103-18-2	AVT-2 DN-S-		
3	(ZC-NEZ)	TNFC 0926	IVTC-1	3	BAU, Ranchi	BAU-DN-109-8	AVT-2 DN-S-		
4	(ZC-CZ)	UPC-9202	IVTC-1	4	NC	Bundel Dinanath-2	AVT-2 DN-S-		
5	(ZC-SZ)	MFC-09-1	IVTC-1	5	BAU, Ranchi	BAU-DN-110-18-2	AVT-2 DN-S-		
6	PAU, Ludhiana	PFC 36	IVTC- 2	14. V	T Cenchrus ciliaris-2019 3	Brd Year			
7	TNAU, Coimbatore	TNFC 1910	IVTC- 3	S.N.	Contributor	Entry name	Code name		
8	UAS B ZARS, Mandya	MFC-18-8	IVTC- 4	1	SKRAU, Bikaner	RCCB-06	VTCC19-1		
9	GBPUAT, Pantnagar	UPC 21-1	IVTC- 5	2	MPKV, Rahuri	RCC-2016-8	VTCC19-2		
10	CCS HAU, Hisar	HFC 17-7	IVTC-6	3	IGFRI RRS, Avikanagar	IG-67-1263	VTCC19-3		
11	UAS B ZARS, Mandya	MFC-18-10	IVTC-7	4	CAZRI, Jodhpur	CAZRI-327	VTCC19-4		
12	(NC)	Bundel Lobia-1	IVTC-8	5	(NC)	IGFRI-67-365	VTCC19-5		
13	(NC)	UPC-5286	IVTC-9	6	(NC)	CAZRI 75	VTCC19-6		
14	PAU, Ludhiana	PFC 40	IVTC- 10	7	(NC))	IGFRI 3108	VTCC19-7		
	PJTSAU, Hyderabad	TSFC-20-06	IVTC- 11	8	SKRAU, Bikaner	RCCB-05	VTCC19-8		
15	1 010/10, Hyddiabad			9	IGFRI RRS, Avikanagar	IG-96-414	VTCC19-9		

S.N.	Contributor	Entry name	Code name
1	IGFRI RRS Avikanagar	IG-97-433	VTCS19-1
2	SKRAU, Bikaner	RCSB-09	VTCS19-2
3	(NC)	IG-96-706	VTCS19-3
4	IGFRI RRS Avikanagar	IG-97-447	VTCS19-4
5	(NC)	TNCS-265	VTCS19-5
6	SKRAU, Bikaner	RCSB-08	VTCS19-6
7	(NC)	CAZRI-76	VTCS19-7
Entries Co	ode Agronomy Kharif-2021	·	·
	2) Maize (Agronomy)		
S.N.	Contributor	Entry name	Code name
1	(NC)	J-1006	AVTM-2-Ag-1
2	(NC)	African Tall	AVTM-2-Ag-2
3	IIMR hybrid	COHM-8	AVTM-2-Ag-3
4	PAU Ludhiana	PFM-12	AVTM-2-Ag-4
2. (AVTPN	1-2) Pearl Millet (Agronomy)		
S.N.	Contributor	Entry name	Code name
1	(NC)	Giant Bajra	AVTPM-2-1-Ag-1
2	JNKVV, Jabalpur	JPM-18-7	AVTPM-2-1-Ag-2
3	BAIF, Urulikanchan	BAIF Bajra-7	AVTPM-2-1-Ag-3
4	Rajasthan check	RBB-1	AVTPM-2-1-Ag-4
5	(ZC-NWZ)	AFB-3	AVTPM-2-1-Ag-5
6	(ZC-NEW)	APFB-9-1	AVTPM-2-1-Ag-5
7	(ZC-CZ)	BAIF Bajra 1	AVTPM-2-1-Ag-5
8	(ZC-SZ)	Moti Bajra	AVTPM-2-1-Ag-5
9	Crystal Corp Ltd	Dev-1	AVTPM-2-1-Ag-6
10	Advanta Ltd	16ADV0055	AVTPM-2-1-Ag-7
3. AVT-2	Dinanath Grass (Agronomy)		
S.N.	Contributor	Entry name	Code name
1	IGFRI, Jhansi	JHD-19-4	AVT-2-DN-Ag-1
2	BAU, Ranchi	BAU-DN-110-18-2	AVT-2-DN-Ag-2
3	BAU, Ranchi	BAU-DN-109-8	AVT-2-DN-Ag-3
4	NC	Bundel Dinanath-2	AVT-2-DN-Ag-4
5	BAU, Ranchi	BAU-DN-103-18-2	AVT-2-DN-Ag-5

1. IVTM: INITIAL VARIETAL TRIAL IN FORAGE MAIZE

(Reference Tables: 1.1 to 1.9)

An Initial Varietal Trial in Forage Maize comprising of fourteen (14) entries with three national checks *viz.*, African Tall, J-1006, COHM-8 was conducted at 23 locations in five zones of the country. There were 4 locations each in hill, south and 5 each in north-west, north-east and central zones.

For green forage yield (q/ha), entry CMH-12-686 showed superiority over the best check by a margin of 10.8% in HZ, 6.8% in CZ, 7.8% in SZ, and 4.4% at all India level. Entry PJHM-1 showed superiority of the best check by a margin of 7.0% in HZ and 1.5% at all India level. Entry MFM-18-2 showed superiority of 7.2% over the best check in SZ. In other zones and at all India level, other entries were either marginally superior or inferior to checks for GFY.

For dry matter yield (q/ha), entry PJHM-1 was superior by a margin of 4.2% in HZ, 7.0% in NWZ, 6.3% in CZ and 5.7 % at all India level. Entry CMH-12-686 showed superiority over the best check by a margin of 5.5% in CZ, and 6.1% at all India level. Entry IIMFC-2 showed superiority of 8.6% over the best check in NEZ. Entry ADFM-2 showed superiority of 6.0% over the best check in NEZ. Hybrid FSM 2021-1 showed superiority of 5.9% in NEZ. In other zones and at all India level, other entries were either marginally superior or inferior to checks for GFY.

For green fodder per day productivity (q/ha/day), entry CMH-12-686(6.55 q/ha/day) was best followed by PJHM-1 (6.50 q/ha/day) and national check J-1006 (6.24 q/ha/day). For dry fodder per day productivity, entry PJHM-1(1.71 q/ha/day) was best followed by CMH-12-686 (1.67 q/ha/day), AH-1645 (1.61 q/ha/day), Best national check J-1006 showed productivity of 1.56q/ha/day only.

For plant height, African Tall (203.4 cm) was adjudged best performer followed by entry MFM-18-27 (201.1 cm). For leafiness, entries CMH-12-686 and AH 1645 were joint first (0.53)

For crude protein yield (q/ha), entry PJHM-1ranked first in HZ, entry CMH-12-686 in NWZ and CZ, entry IIMFC-2 in NEZ, and National check African Tall in SZ. At all India level, entry CMH-12-686 (8.0 q/ha) was best followed by PJHM-1 (7.8 q/ha). The best performer in check category was African Tall (7.3 q/ha).

For crude protein (%), entry PJHM-1 ranked first in hill, national check African Tall in NWZ and SZ, entry CMH-12-686 in CZ, entry IIMFC-2 in NEZ, and National check African Tall in SZ. At all India level African Tall (8.7 %) was best performer. For other quality parameters, Checks J-1006 and COHM-8 ranked first for ADF and NDF respectively, while CMH-12-686was best performer for IVDMD followed by ADFM-2.

Table 1.1 IVTM: Initial Varietal Trial in Forage Maize: Green Forage Yield (q/ha)

E-4-1-				Hill Zone			
Entries	Palampur	Srinagar	Rajouri	Almora	Average	Rank	Superiority%
ADFM-3	329.6	465.3	459.9	297.3	388.0	7	
AH-1645	339.2	447.0	485.8	263.9	384.0	8	
IIMFC 1	251.8	463.7	441.4	118.1	318.7	16	
ADC-2	447.3	457.0	468.1	152.8	381.3	9	
Hybrid - FSM2021-1	338.5	483.7	431.0	194.5	361.9	10	
PJHM-1	477.7	493.3	423.6	277.8	418.1	2	7.0
IIMFC 2	268.1	448.3	466.1	159.7	335.6	15	
ADFM-2	463.7	421.7	402.6	291.7	394.9	4	1.0
MFM-18-27	442.2	505.3	459.9	173.6	395.3	3	1.1
CMH-12-686	460.7	488.0	468.1	315.3	433.0	1	10.8
HPFM-11	364.4	457.3	414.0	208.4	361.0	11	
MFM-18-2	459.2	431.7	366.2	173.6	357.7	12	
DFH -4	214.1	447.3	448.8	93.1	300.8	17	
KDFM -7	402.9	463.3	362.9	132.0	340.3	14	
African Tall (NC)	396.3	481.7	497.3	187.6	390.7	6	
J-1006 (NC)	351.8	463.3	408.1	340.2	390.8	5	
COHM-8 (NC)	435.5	446.0	363.2	159.7	351.1	13	
Mean	379.0	462.6	433.3	208.2	370.8		
CD at 5%	76.1	44.4	2.8	51.9			
CV (%)	12.0	5.8	10.7	18.0			

Table 1.1 IVTM: Initial Varietal Trial in Forage Maize: Green Forage Yield (q/ha)

E-twice				North We	est Zone		
Entries	Ludhiana	Hisar	Pantnagar	Jalore	**Udaipur	Average	Rank
ADFM-3	348.4	271.1	265.4	179.6	62.6	266.1	11
AH-1645	481.8	331.7	254.9	163.0	51.0	307.8	4
IIMFC 1	259.5	278.3	222.2	244.4	52.1	251.1	14
ADC-2	335.7	264.9	196.6	207.4	71.3	251.2	13
Hybrid - FSM2021-1	361.1	257.5	220.5	234.3	56.7	268.3	8
PJHM-1	526.2	322.7	319.8	222.2	63.7	347.7	2
IIMFC 2	227.8	220.8	193.4	129.6	64.2	192.9	16
ADFM-2	380.2	283.4	263.5	146.3	82.3	268.3	8
MFM-18-27	361.1	224.0	318.1	169.0	53.4	268.1	9
CMH-12-686	405.6	305.4	309.3	307.9	57.1	332.1	3
HPFM-11	310.3	289.8	333.3	278.7	59.0	303.0	6
MFM-18-2	392.8	303.6	281.9	238.4	88.1	304.2	5
DFH -4	215.1	264.0	184.7	108.8	65.5	193.2	15
KDFM -7	335.7	303.6	227.1	172.7	65.1	259.8	12
African Tall (NC)	303.9	296.7	238.3	228.2	66.1	266.8	10
J-1006 (NC)	551.6	376.3	311.5	236.6	60.0	369.0	1
COHM-8 (NC)	430.9	314.0	246.4	134.3	63.8	281.4	7
Mean	366.3	288.7	258.1	200.1	63.6	278.3	
CD at 5%	33.0	49.8	26.6	67.3	13.6		
CV (%)	6.2	10.4	9.8		12.8		

Note: ** Data is not included in zonal and all India average due to low yield of data

Table 1.1 IVTM: Initial Varietal Trial in Forage Maize: Green Forage Yield (q/ha)

T4				North Ea	st Zone			
Entries	Bhubaneswar	Ranchi	Pusa	Ayodhya	Imphal	Average	Rank	Superiority%
ADFM-3	254.1	449.3	393.3	281.8	406.0	356.9	10	
AH-1645	284.3	472.9	360.0	273.6	451.4	368.4	9	
IIMFC 1	370.8	385.4	313.3	232.8	456.0	351.7	13	
ADC-2	239.6	384.0	323.3	224.6	403.0	314.9	16	
Hybrid - FSM2021-1	204.1	488.2	453.3	465.5	428.1	407.9	2	2.5
PJHM-1	335.4	447.9	353.3	302.2	510.4	389.8	6	
IIMFC 2	219.8	496.5	430.0	420.6	509.0	415.2	1	4.3
ADFM-2	251.0	486.8	366.7	330.8	602.2	407.5	3	2.4
MFM-18-27	321.8	491.7	300.0	289.9	577.3	396.1	5	
CMH-12-686	212.5	493.7	383.3	343.0	439.9	374.5	7	
HPFM-11	234.3	450.7	340.0	232.8	350.0	321.6	15	
MFM-18-2	316.6	387.5	296.7	200.2	577.9	355.8	11	
DFH -4	279.1	487.5	310.0	175.6	313.1	313.1	17	
KDFM -7	309.3	490.3	283.3	220.5	413.4	343.4	14	
African Tall (NC)	380.2	436.1	376.7	200.1	596.5	397.9	4	
J-1006 (NC)	367.7	484.7	356.7	249.1	395.4	370.7	8	
COHM-8 (NC)	306.2	483.3	323.3	200.1	460.9	354.8	12	
Mean	287.5	459.8	350.8	273.1	464.1	367.1		
CD at 5%	32.8	38.1	11.7	51.8	42.0			
CV (%)	6.9	5.0	12.3	11.1	5.4			

Table 1.1 IVTM: Initial Varietal Trial in Forage Maize: Green Forage Yield (q/ha)

Enduina				Central Z	Zone			
Entries	Raipur	Jabalpur	Rahuri	Urulikanchan	Jhansi	Average	Rank	Superiority%
ADFM-3	324.1	423.3	222.0	416.7	253.7	328.0	13	
AH-1645	342.6	444.2	258.4	517.2	187.0	349.9	9	
IIMFC 1	363.4	465.0	268.5	446.9	161.1	341.0	12	
ADC-2	254.6	312.3	261.2	352.1	313.0	298.7	16	
Hybrid - FSM2021-1	324.1	340.1	233.9	400.3	292.6	318.2	14	
PJHM-1	361.1	451.1	317.7	638.1	335.2	420.6	2	2.8
IIMFC 2	261.6	305.4	231.3	333.3	263.0	278.9	17	
ADFM-2	331.0	569.1	243.8	474.7	231.5	370.0	8	
MFM-18-27	375.0	659.3	235.6	482.9	235.2	397.6	4	
CMH-12-686	344.9	617.7	277.7	567.0	375.9	436.6	1	6.8
HPFM-11	314.8	416.4	281.0	402.0	166.7	316.2	15	
MFM-18-2	273.2	652.4	235.2	396.3	161.1	343.6	11	
DFH -4	423.6	610.7	328.4	357.0	261.1	396.2	5	
KDFM -7	284.7	374.8	278.4	506.5	298.1	348.5	10	
African Tall (NC)	365.7	423.3	290.0	525.3	331.5	387.2	6	
J-1006 (NC)	365.7	451.1	333.8	592.3	301.9	409.0	3	
COHM-8 (NC)	326.4	589.9	309.5	447.7	238.9	382.5	7	
Mean	331.6	476.8	271.0	462.1	259.3	360.1		
CD at 5%	83.3	1.8	50.4	101.7	110.7			
CV (%)	15.1	13.8	11.2	13.2	25.7			

Table 1.1 IVTM: Initial Varietal Trial in Forage Maize: Green Forage Yield (q/ha)

			S	outh Zone	J	` .	,	1	All India	l
Entries	Hydera-	Coimb-	Man-	Karai-	Aver-	Ra-	Superi-	Aver-	Ra-	Superi-
	bad	atore	dya	kal	age	nk	ority%	age	nk	ority%
ADFM-3	310.2	490.7	415.7	330.0	386.7	12		344.9	11	
AH-1645	488.0	569.4	471.2	320.2	462.2	3	3.0	373.1	7	
IIMFC 1	433.4	472.2	374.1	380.7	415.1	10		336.5	14	
ADC-2	441.7	467.6	301.2	273.0	370.9	14		321.9	15	
Hybrid - FSM2021-1	372.3	472.2	320.6	300.4	366.4	15		346.2	10	
PJHM-1	355.6	675.9	334.0	317.4	420.7	9		399.9	2	1.5
IIMFC 2	443.6	393.5	324.6	289.6	362.8	16		319.8	16	
ADFM-2	444.5	555.6	379.8	313.9	423.4	8		374.3	6	
MFM-18-27	481.5	527.8	435.3	300.5	436.3	5		380.3	4	
CMH-12-686	549.1	592.6	452.5	340.6	483.7	1	7.8	411.4	1	4.4
HPFM-11	473.2	546.3	396.3	293.8	427.4	7		343.4	12	
MFM-18-2	585.2	601.9	438.8	297.9	481.0	2	7.2	366.7	8	
DFH -4	451.9	254.6	355.3	270.5	333.1	17		311.6	17	
KDFM -7	463.0	476.9	376.6	287.0	400.9	11		339.2	13	
African Tall (NC)	474.1	634.3	369.2	317.1	448.7	4		379.5	5	
J-1006 (NC)	454.7	518.5	376.8	380.3	432.6	6		394.0	3	
COHM-8 (NC)	349.1	481.5	379.9	317.1	381.9	13		352.0	9	
Mean	445.4	513.6	382.5	313.5	413.7			358.5		
CD at 5%	92.6	46.3	43.1	42.4						
CV (%)	12.5	5.4	8.0	7.8						

Table 1.2 IVTM: Initial Varietal Trial in Forage Maize: Dry Matter Yield (q/ha)

Entries		-	Hill	Zone		
Entries	Palampur	Srinagar	Almora	Average	Rank	Superiority%
ADFM-3	103.9	114.3	76.3	98.2	8	
AH-1645	107.3	105.0	58.9	90.4	13	
IIMFC 1	82.4	109.0	32.8	74.7	16	
ADC-2	144.4	108.6	49.7	100.9	5	
Hybrid - FSM2021-1	105.8	118.0	49.7	91.2	12	
PJHM-1	163.0	111.3	65.3	113.2	1	4.2
IIMFC 2	85.5	106.3	42.9	78.2	15	
ADFM-2	141.0	96.3	63.6	100.3	6	
MFM-18-27	134.7	108.3	52.5	98.5	7	
CMH-12-686	146.3	105.3	65.5	105.7	3	
HPFM-11	121.4	114.6	54.3	96.8	9	
MFM-18-2	152.2	107.0	51.8	103.7	4	
DFH -4	69.2	99.3	29.5	66.0	17	
KDFM -7	128.8	102.0	35.4	88.7	14	
African Tall (NC)	126.3	112.6	51.3	96.7	10	
J-1006 (NC)	119.3	110.6	96.1	108.7	2	
COHM-8 (NC)	146.0	100.0	41.0	95.7	11	
Mean	122.2	107.6	53.9	94.6		
CD at 5%	27.7	10.9	7.6			
CV%	13.6	6.1	10.3			

Table 1.2 IVTM: Initial Varietal Trial in Forage Maize: Dry Matter Yield (q/ha)

Entries			N	North West Z	one		
Entries	Ludhiana	Hisar	Pantnagar	Jalore	Average	Rank	Superiority%
ADFM-3	94.0	32.1	50.4	31.0	51.9	9	
AH-1645	137.4	36.5	47.0	28.0	62.2	4	
IIMFC 1	70.1	29.0	41.5	41.7	45.6	13	
ADC-2	100.7	30.8	40.4	35.4	51.8	10	
Hybrid - FSM2021-1	101.1	29.9	41.8	39.9	53.2	8	
PJHM-1	152.6	42.3	60.6	38.1	73.4	1	7.0
IIMFC 2	44.5	29.5	37.1	21.9	33.2	16	
ADFM-2	104.7	38.3	45.2	25.0	53.3	7	
MFM-18-27	72.2	26.1	59.5	28.9	46.7	12	
CMH-12-686	115.7	39.7	63.4	52.4	67.8	3	
HPFM-11	93.1	36.7	61.6	47.7	59.8	6	
MFM-18-2	64.9	35.4	53.0	39.2	48.1	11	
DFH -4	52.8	39.2	37.7	19.2	37.2	15	
KDFM -7	85.7	47.8	44.5	29.5	51.9	9	
African Tall (NC)	60.8	35.7	44.5	39.1	45.0	14	
J-1006 (NC)	121.4	54.4	57.5	40.9	68.6	2	
COHM-8 (NC)	129.3	42.6	48.0	23.3	60.8	5	
Mean	94.2	36.8	49.0	34.2	53.6		
CD at 5%	6.3	12.2	5.5	10.6			
CV%	7.0	19.6	6.9				

Table 1.2 IVTM: Initial Varietal Trial in Forage Maize: Dry Matter Yield (q/ha)

Entries				North East	Zone			
Entries	Bhubaneswar	Ranchi	Pusa	Ayodhya	Imphal	Average	Rank	Superiority%
ADFM-3	62.2	97.3	93.3	68.9	77.1	79.8	11	
AH-1645	70.8	141.1	80.0	69.7	83.3	89.0	5	2.1
IIMFC 1	92.8	82.9	77.0	66.3	73.0	78.4	13	
ADC-2	60.3	87.7	80.0	60.5	82.7	74.2	15	
Hybrid - FSM2021-1	51.3	113.9	104.0	111.7	80.8	92.3	3	5.9
PJHM-1	81.2	103.8	80.0	71.0	94.6	86.1	7	
IIMFC 2	55.6	118.3	91.7	107.1	100.5	94.7	1	8.6
ADFM-2	61.2	113.6	85.0	89.3	112.8	92.4	2	6.0
MFM-18-27	81.6	117.2	75.0	75.4	71.7	84.2	8	
CMH-12-686	53.7	130.8	86.7	96.0	78.2	89.1	4	2.2
HPFM-11	55.3	94.6	75.0	61.6	60.3	69.4	17	
MFM-18-2	78.8	83.3	75.7	48.9	101.6	77.7	14	
DFH -4	69.4	131.6	79.0	44.2	42.0	73.3	16	
KDFM -7	76.3	114.4	70.3	57.3	100.1	83.7	9	
African Tall (NC)	94.8	84.3	90.0	52.9	113.8	87.2	6	
J-1006 (NC)	95.9	99.4	83.3	60.9	53.7	78.6	12	
COHM-8 (NC)	75.9	112.0	80.0	48.6	91.1	81.5	10	
Mean	71.6	107.4	82.7	70.0	83.4	83.0		
CD at 5%	8.7	26.8	7.2	12.5	11.6			
CV%	7.3	3.5	11.5	7.6	8.4			

Table 1.2 IVTM: Initial Varietal Trial in Forage Maize: Dry Matter Yield (q/ha)

Entries				Central Z	Zone			
Entries	Raipur	Jabalpur	Rahuri	Urulikanchan	Jhansi	Average	Rank	Superiority%
ADFM-3	74.8	99.6	47.7	77.2	73.5	74.6	11	
AH-1645	75.6	105.4	60.6	92.4	44.8	75.8	9	
IIMFC 1	85.1	110.3	47.6	59.2	33.8	67.2	15	
ADC-2	59.9	73.3	52.5	57.6	77.8	64.2	16	
Hybrid - FSM2021-1	80.6	78.6	48.5	90.5	71.0	73.8	12	
PJHM-1	88.4	108.7	61.8	110.3	95.2	92.9	1	6.3
IIMFC 2	65.8	71.7	39.7	57.4	56.0	58.1	17	
ADFM-2	81.0	137.6	45.3	106.9	64.2	87.0	5	
MFM-18-27	93.9	161.8	39.0	69.0	45.9	81.9	6	
CMH-12-686	84.2	151.0	59.1	86.0	80.7	92.2	2	5.5
HPFM-11	76.3	99.8	60.1	73.7	47.1	71.4	14	
MFM-18-2	71.9	159.5	35.6	78.8	31.4	75.4	10	
DFH -4	110.4	148.8	57.9	60.5	74.4	90.4	3	3.4
KDFM -7	69.4	88.7	53.3	87.2	69.2	73.6	13	
African Tall (NC)	77.7	99.5	46.7	114.7	69.7	81.7	7	
J-1006 (NC)	92.0	108.7	65.0	99.6	71.9	87.4	4	
COHM-8 (NC)	74.6	143.6	57.9	75.2	54.3	81.1	8	
Mean	80.1	114.5	51.7	82.1	62.4	78.2		
CD at 5%	21.1	0.4	9.4	17.7	26.0			
CV%	15.9	13.8	11.0	12.9	25.0			

Table 1.2 IVTM: Initial Varietal Trial in Forage Maize: Dry Matter Yield (q/ha)

				outh Zone		· · · ·		1	All Indi	a
Entries	Hydera-	Coimb-	Man-	Karai-	Aver-	Ra-	Superi-	Aver-	Ra-	Superi-
	bad	atore	dya	kal	age	nk	ority%	age	nk	ority%
ADFM-3	51.1	113.6	98.4	110.4	93.4	7		78.4	9	
AH-1645	83.4	124.8	118.5	98.5	106.3	1	4.3	84.2	4	
IIMFC 1	73.4	94.4	73.7	122.0	90.9	10		71.3	14	
ADC-2	74.8	101.2	72.6	84.5	83.3	13		73.1	13	
Hybrid - FSM2021-1	63.6	108.8	70.0	77.0	79.8	15		77.9	10	
PJHM-1	58.6	153.6	78.2	83.6	93.5	6		90.6	2	5.7
IIMFC 2	71.0	83.6	74.0	74.8	75.8	17		68.3	16	
ADFM-2	75.4	116.8	84.1	82.0	89.6	11		84.2	4	
MFM-18-27	79.1	110.5	113.0	84.9	96.9	5		81.0	6	
CMH-12-686	87.5	121.3	106.6	99.0	103.6	2	1.7	90.9	1	6.1
HPFM-11	81.6	114.5	90.0	84.0	92.5	8		76.4	12	
MFM-18-2	91.8	119.3	115.3	77.3	100.9	4		79.6	8	
DFH -4	89.6	56.7	85.6	72.2	76.0	16		70.0	15	
KDFM -7	79.6	97.4	89.6	90.0	89.2	12		77.0	11	
African Tall (NC)	81.1	140.9	81.0	104.6	101.9	3		82.0	5	
J-1006 (NC)	57.2	120.5	87.7	103.0	92.1	9		85.7	3	
COHM-8 (NC)	58.0	95.6	98.2	77.9	82.4	14		79.7	7	
Mean	73.9	110.2	90.4	89.8	91.1			79.4		
CD at 5%	17.4	14.4	16.4	19.7						
CV%	14.1	5.6	13.0	12.7						

Table 1.3 IVTM: Initial Varietal Trial in Forage Maize: Green Forage Yield (q/ha/day)

Entries	Palampur	Srinagar	Ludhiana	Hisar	Pantnagar	Bhubaneswar	Ranchi	Pusa	Ayodhya
ADFM-3	5.22	5.66	4.41	6.12	4.21	3.72	8.42	8.14	4.61
AH-1645	5.38	5.45	6.10	7.21	3.98	4.26	7.75	7.25	4.14
IIMFC 1	3.73	5.12	3.28	5.31	2.96	5.68	5.99	5.31	3.27
ADC-2	6.64	5.22	4.25	5.69	3.02	3.69	6.44	6.55	3.11
Hybrid - FSM2021-1	4.97	5.55	4.57	5.30	3.45	3.38	8.23	8.95	6.94
PJHM-1	7.25	5.56	6.66	6.67	5.08	5.19	7.38	6.88	4.37
IIMFC 2	3.72	6.01	2.88	4.19	2.51	3.30	7.60	7.25	6.18
ADFM-2	6.90	5.47	4.81	6.17	4.25	3.92	8.44	7.19	4.65
MFM-18-27	6.78	5.85	4.57	4.09	4.36	4.90	7.37	5.03	4.39
CMH-12-686	6.67	5.65	5.13	6.64	4.83	3.48	8.18	7.37	5.27
HPFM-11	5.74	5.5	3.93	6.94	5.21	3.66	8.72	6.94	3.42
MFM-18-2	6.17	5.18	4.97	5.36	3.76	4.34	6.12	5.09	3.12
DFH -4	3.00	5.21	2.72	4.64	2.53	4.50	8.04	5.74	2.78
KDFM -7	5.76	5.46	4.25	6.41	3.49	4.69	7.66	5.18	3.55
African Tall (NC)	5.60	5.26	3.85	5.91	3.09	5.33	6.64	6.38	2.81
J-1006 (NC)	5.24	5.40	6.98	6.33	4.51	5.87	7.61	6.33	3.55
COHM-8 (NC)	6.60	5.39	5.45	6.63	3.85	4.97	8.33	6.26	2.81
Mean	5.61	5.47	4.64	5.86	3.83	4.40	7.58	6.58	4.06

Table 1.3 IVTM: Initial Varietal Trial in Forage Maize: Green Forage Yield (q/ha/day)

Entries	Rai-	Rah-	Urulikan-	Jha-	Hydera-	Coimb-	Man-	Karai-	Aver-	Ra-
Entries	pur	uri	chan	nsi	bad	atore	dya	kal	age	nk
ADFM-3	7.05	4.41	6.83	4.24	4.96	8.92	6.76	4.33	5.77	7
AH-1645	6.85	5.20	8.48	3.08	7.50	10.17	7.27	4.32	6.14	4
IIMFC 1	6.27	4.88	7.33	2.71	6.94	7.05	5.94	5.17	5.11	15
ADC-2	5.30	5.02	5.77	5.08	7.31	7.67	5.21	3.64	5.27	14
Hybrid - FSM2021-1	6.90	4.06	6.56	4.74	5.94	7.74	5.18	3.98	5.67	10
PJHM-1	6.94	5.85	10.46	5.63	5.77	10.90	5.53	4.41	6.50	2
IIMFC 2	4.51	3.85	5.46	4.02	7.48	5.96	5.86	4.03	4.99	16
ADFM-2	6.76	4.84	7.78	3.78	7.09	9.11	6.60	4.02	5.99	5
MFM-18-27	6.47	3.80	7.00	3.65	7.64	7.88	7.44	4.20	5.61	11
CMH-12-686	6.90	5.14	9.30	6.39	8.80	9.56	7.59	4.41	6.55	1
HPFM-11	6.56	5.11	6.59	2.72	7.67	9.42	6.34	3.91	5.79	6
MFM-18-2	4.71	4.20	5.74	2.58	8.89	9.12	7.14	3.88	5.32	13
DFH -4	7.30	5.47	5.85	4.32	7.18	4.11	5.88	3.75	4.88	17
KDFM -7	5.69	5.25	8.30	4.79	7.37	7.45	5.81	3.91	5.59	12
African Tall (NC)	6.31	4.94	7.61	5.18	7.41	9.47	6.32	4.39	5.68	9
J-1006 (NC)	7.17	5.93	9.71	4.86	7.08	7.98	6.33	5.24	6.24	3
COHM-8 (NC)	6.53	6.07	7.34	4.03	5.43	7.64	6.18	4.27	5.75	8
Mean	6.37	4.94	7.42	4.22	7.09	8.24	6.32	4.23	5.70	

Table 1.4 IVTM: Initial Varietal Trial in Forage Maize: Dry Matter Yield (q/ha/day)

Entries	Palampur	Srinagar	Ludhiana	Hisar	Pantnagar	Bhubaneswar	Ranchi	Pusa	Ayodhya
ADFM-3	4.14	1.29	1.19	0.72	0.80	0.91	1.83	1.93	1.12
AH-1645	4.23	1.25	1.74	0.79	0.73	1.06	2.31	1.61	1.05
IIMFC 1	3.05	1.19	0.89	0.55	0.55	1.42	1.29	1.02	0.93
ADC-2	5.34	1.25	1.27	0.66	0.62	0.93	1.47	1.62	0.84
Hybrid - FSM2021-1	3.88	1.4	1.28	0.61	0.65	0.85	1.92	2.45	1.66
PJHM-1	6.19	1.33	1.93	0.88	0.96	1.26	1.71	1.56	1.02
IIMFC 2	2.96	1.31	0.56	0.56	0.48	0.83	1.81	1.88	1.57
ADFM-2	5.24	1.38	1.33	0.83	0.73	0.96	1.97	1.67	1.25
MFM-18-27	5.16	1.35	0.91	0.48	0.81	1.24	1.76	1.26	1.14
CMH-12-686	5.35	1.25	1.46	0.86	0.99	0.88	2.17	1.67	1.47
HPFM-11	4.78	1.43	1.18	0.88	0.96	0.86	1.83	1.53	0.90
MFM-18-2	5.11	1.25	0.82	0.62	0.71	1.08	1.32	0.99	0.76
DFH -4	2.42	1.34	0.67	0.69	0.52	1.12	2.17	1.20	0.70
KDFM -7	4.59	1.25	1.08	1.01	0.68	1.16	1.79	1.25	0.92
African Tall (NC)	4.47	1.27	0.77	0.65	0.58	1.33	1.28	1.53	0.74
J-1006 (NC)	4.43	1.45	1.54	1.09	0.83	1.53	1.56	1.48	0.87
COHM-8 (NC)	5.56	1.26	1.64	0.90	0.75	1.23	1.93	1.55	0.67
Mean	4.52	1.31	1.19	0.75	0.73	1.10	1.77	1.54	1.04

Table 1.4 IVTM: Initial Varietal Trial in Forage Maize: Dry Matter Yield (q/ha/day)

Entries	Raipur	Rahuri	Urulikanchan	Hyderabad	Coimbatore	Mandya	Karaikal	Average	Rank
ADFM-3	1.63	0.95	1.27	0.82	2.07	1.60	1.45	1.48	8
AH-1645	1.51	1.22	1.51	1.28	2.23	1.83	1.33	1.61	3
IIMFC 1	1.47	0.87	0.97	1.18	1.41	1.17	1.66	1.23	14
ADC-2	1.25	1.01	0.94	1.24	1.66	1.25	1.13	1.40	12
Hybrid - FSM2021-1	1.71	0.84	1.48	1.02	1.78	1.13	1.02	1.48	8
PJHM-1	1.70	1.14	1.81	0.95	2.48	1.29	1.16	1.71	1
IIMFC 2	1.13	0.66	0.94	1.20	1.27	1.34	1.04	1.22	15
ADFM-2	1.65	0.90	1.75	1.20	1.92	1.46	1.05	1.58	4
MFM-18-27	1.62	0.63	1.00	1.25	1.65	1.93	1.19	1.46	9
CMH-12-686	1.68	1.09	1.41	1.40	1.96	1.78	1.28	1.67	2
HPFM-11	1.59	1.09	1.21	1.32	1.97	1.44	1.12	1.51	7
MFM-18-2	1.24	0.64	1.14	1.39	1.81	1.88	1.01	1.36	13
DFH -4	1.90	0.97	0.99	1.43	0.91	1.42	1.00	1.22	15
KDFM -7	1.39	1.01	1.43	1.27	1.52	1.39	1.23	1.44	10
African Tall (NC)	1.34	0.80	1.66	1.27	2.10	1.39	1.45	1.41	11
J-1006 (NC)	1.80	1.15	1.63	0.88	1.85	1.48	1.42	1.56	5
COHM-8 (NC)	1.49	1.13	1.23	0.90	1.52	1.60	1.05	1.53	6
Mean	1.54	0.95	1.32	1.18	1.77	1.49	1.21	1.46	

Table 1.5 IVTM: Initial Varietal Trial in Forage Maize (New): Crude Protein Yield (q/ha)

Entries	Hill Zo	ne	North West Zone							
Entries	Palampur	Rank	Ludhiana	Hisar	Pantnagar	Average	Rank			
ADFM-3	9.4	13	7.5	2.9	4.4	3.7	7			
AH-1645	10.3	11	12.0	3.6	4.5	4.0	6			
IIMFC 1	7.4	15	5.8	3.1	4.0	3.6	8			
ADC-2	12.2	9	8.8	3.1	3.5	3.3	10			
Hybrid - FSM2021-1	9.6	12	9.1	3.2	3.7	3.4	9			
PJHM-1	18.1	1	13.9	3.7	4.8	4.2	4			
IIMFC 2	8.2	14	2.7	3.1	3.2	3.2	11			
ADFM-2	12.6	7	9.6	4.2	4.0	4.1	5			
MFM-18-27	13.1	5	6.8	2.6	5.7	4.2	4			
CMH-12-686	15.8	3	10.6	4.1	6.1	5.1	1			
HPFM-11	12.8	6	7.8	4.1	5.4	4.8	2			
MFM-18-2	16.1	2	4.7	3.8	4.6	4.2	4			
DFH -4	7.0	16	4.0	4.3	3.0	3.6	8			
KDFM -7	12.8	6	7.0	4.8	3.9	4.3	3			
African Tall (NC)	12.1	10	5.7	3.7	4.7	4.2	4			
J-1006 (NC)	12.5	8	9.7	4.6	4.0	4.3	3			
COHM-8 (NC)	14.5	4	8.5	4.4	4.2	4.3	3			
Mean	12.0		7.9	3.7	4.3	4.0				

Table 1.5 IVTM: Initial Varietal Trial in Forage Maize (New): Crude Protein Yield (q/ha)

	North East Zone Central Zone											
Entries	Bhuban-	Ran-	Ayod-	Imp-	Aver-	Ra-	Rai-	Jabal-	Rah-	Urulikan-	Aver-	Ra-
	eswar	chi	hya	hal	age	nk	pur	pur	uri	chan	age	nk
ADFM-3	4.7	5.6	5.2	4.9	5.1	12	6.5	7.5	3.1	7.3	6.1	10
AH-1645	5.2	8.9	5.3	5.2	6.2	6	6.5	8.0	4.3	8.5	6.8	8
IIMFC 1	6.8	5.5	5.0	6.1	5.8	8	8.3	8.4	3.4	4.8	6.2	9
ADC-2	4.3	5.8	4.5	5.9	5.1	12	5.9	5.5	3.7	4.5	4.9	13
Hybrid - FSM2021-1	3.8	9.2	8.9	5.7	6.9	3	6.7	5.9	3.9	7.0	5.9	12
PJHM-1	6.2	7.1	5.5	6.6	6.3	5	8.2	8.3	4.5	8.2	7.3	6
IIMFC 2	4.0	10.4	8.7	8.9	8.0	1	5.1	5.4	3.8	4.7	4.7	14
ADFM-2	4.6	9.4	7.8	8.8	7.7	2	8.1	10.6	4.0	10.0	8.2	2
MFM-18-27	5.9	10.3	6.0	5.5	6.9	3	9.3	13.0	3.8	5.7	8.0	3
CMH-12-686	3.9	11.3	7.2	5.0	6.8	4	8.3	11.9	5.8	8.2	8.5	1
HPFM-11	4.6	7.4	4.8	4.4	5.3	11	6.2	7.6	5.3	5.0	6.0	11
MFM-18-2	5.8	5.9	3.9	7.2	5.7	9	6.8	12.6	2.4	6.1	7.0	7
DFH -4	5.1	12.9	3.3	3.0	6.1	7	10.7	11.7	6.0	3.7	8.0	3
KDFM -7	6.2	9.5	4.5	7.0	6.8	4	5.8	6.7	4.7	7.3	6.1	10
African Tall (NC)	7.0	6.6	4.2	7.2	6.2	6	6.4	7.5	3.8	10.3	7.0	7
J-1006 (NC)	6.8	7.1	4.3	4.1	5.5	10	9.2	8.3	5.1	9.2	7.9	4
COHM-8 (NC)	5.6		3.8	5.9	5.1	12	6.5	11.1	5.8	6.3	7.4	5
Mean	5.3	8.3	5.5	5.9	6.2		7.3	8.8	4.3	6.9	6.8	

Table 1.5 IVTM: Initial Varietal Trial in Forage Maize (New): Crude Protein Yield (q/ha)

Endui oa			South Zone		1	All Iı	ndia
Entries	Coimbatore	Mandya	Hyderabad	Average	Rank	Average	Rank
ADFM-3	11.5	7.7	3.9	7.7	4	6.1	11
AH-1645	11.0	10.9	6.7	9.5	2	7.4	4
IIMFC 1	11.1	5.5	4.8	7.1	9	6.0	12
ADC-2	11.0	4.8	5.7	7.2	8	5.9	13
Hybrid - FSM2021-1	10.4	5.8	4.6	6.9	10	6.5	10
PJHM-1	13.5	5.1	3.9	7.5	6	7.8	2
IIMFC 2	7.4	5.3	5.3	6.0	13	5.7	14
ADFM-2	9.7	7.0	5.2	7.3	7	7.7	3
MFM-18-27	10.2	6.9	4.9	7.3	7	7.3	5
CMH-12-686	9.0	6.9	6.1	7.3	7	8.0	1
HPFM-11	10.1	6.3	6.5	7.6	5	6.5	10
MFM-18-2	12.5	10.1	5.7	9.4	3	7.2	6
DFH -4	5.0	5.7	6.4	5.7	15	6.1	11
KDFM -7	8.6	5.9	4.8	6.4	12	6.6	9
African Tall (NC)	17.3	6.8	6.7	10.3	1	7.3	5
J-1006 (NC)	8.9	6.2	4.5	6.5	11	7.0	7
COHM-8 (NC)	7.9	5.7	3.8	5.8	14	6.7	8
Mean	10.3	6.6	5.3	7.4		6.8	

Table 1.6 IVTM: Initial Varietal Trial in Forage Maize (New): Crude Protein (%)

Entuina	Hill Zo	ne	North West Zone							
Entries	Palampur	Rank	Ludhiana	Hisar	Pantnagar	Average	Rank			
ADFM-3	9.0	7	8.0	9.2	8.8	8.6	10			
AH-1645	9.6	6	8.7	9.8	9.6	9.4	5			
IIMFC 1	9.0	7	8.2	10.8	9.6	9.6	3			
ADC-2	8.5	9	8.7	10.1	8.8	9.2	6			
Hybrid - FSM2021-1	9.0	7	9.0	10.8	8.8	9.5	4			
PJHM-1	11.1	1	9.1	8.8	7.9	8.6	10			
IIMFC 2	9.6	6	6.1	10.6	8.8	8.5	11			
ADFM-2	8.9	8	9.2	10.9	8.8	9.6	3			
MFM-18-27	9.6	6	9.4	10.0	9.6	9.7	2			
CMH-12-686	10.8	2	9.2	10.2	9.6	9.7	2			
HPFM-11	10.5	3	8.4	11.2	8.8	9.5	4			
MFM-18-2	10.5	3	7.3	10.6	8.8	8.9	8			
DFH -4	10.2	4	7.5	10.9	7.9	8.8	9			
KDFM -7	9.9	5	8.2	10.0	8.8	9.0	7			
African Tall (NC)	9.6	6	9.4	10.4	10.5	10.1	1			
J-1006 (NC)	10.5	3	8.0	8.4	7.0	7.8	12			
COHM-8 (NC)	9.9	5	6.6	10.4	8.8	8.6	10			
Mean	9.8		8.3	10.2	8.9	9.1				

Table 1.6 IVTM: Initial Varietal Trial in Forage Maize (New): Crude Protein (%)

Entries			North E	ast Zone					Centra	al Zone		
	Bhuban-	Ran-	Ayod-	Imp-	Aver-	Ra-	Rai-	Jabal-	Rah-	Urulikan-	Aver-	Ra-
	eswar	chi	hya	hal	age	nk	pur	pur	uri	chan	age	nk
ADFM-3	7.5	5.8	7.5	6.3	6.8	13	8.5	7.5	6.6	9.5	8.0	8
AH-1645	7.4	6.3	7.6	6.3	6.9	12	8.6	7.6	7.1	9.2	8.1	7
IIMFC 1	7.4	6.6	7.5	8.3	7.4	8	9.7	7.6	7.1	8.1	8.1	7
ADC-2	7.1	6.6	7.5	7.1	7.1	11	9.9	7.5	7.1	7.9	8.1	7
Hybrid - FSM2021-1	7.3	8.1	8.0	7.1	7.6	6	8.3	7.5	8.1	7.7	7.9	9
PJHM-1	7.6	6.8	7.8	6.9	7.3	9	9.3	7.7	7.3	7.5	7.9	9
IIMFC 2	7.3	8.8	8.1	8.8	8.2	1	7.7	7.5	9.6	8.1	8.2	6
ADFM-2	7.5	8.3	8.8	7.8	8.1	2	10.0	7.7	8.8	9.3	9.0	2
MFM-18-27	7.3	8.8	7.9	7.6	7.9	4	9.9	8.0	9.8	8.3	9.0	2
CMH-12-686	7.3	8.6	7.5	6.4	7.5	7	9.9	7.9	9.8	9.5	9.3	1
HPFM-11	8.2	7.8	7.8	7.3	7.8	5	8.1	7.7	8.8	6.8	7.8	10
MFM-18-2	7.4	7.1	7.9	7.1	7.4	8	9.6	7.9	6.8	7.8	8.0	8
DFH -4	7.4	9.8	7.6	7.1	8.0	3	9.7	7.8	10.3	6.1	8.5	4
KDFM -7	8.1	8.3	7.8	7.0	7.8	5	8.3	7.5	8.8	8.4	8.3	5
African Tall (NC)	7.4	7.8	8.0	6.3	7.4	8	8.2	7.5	8.1	8.9	8.2	6
J-1006 (NC)	7.1	7.1	7.0	7.5	7.2	10	10.0	7.7	7.8	9.3	8.7	3
COHM-8 (NC)	7.4		7.8	6.5	7.2	10	8.7	7.7	10.1	8.4	8.7	3
Mean	7.4	7.7	7.8	7.1	7.5		9.1	7.7	8.3	8.3	8.3	

Table 1.6 IVTM: Initial Varietal Trial in Forage Maize (New): Crude Protein (%)

Entries		=	South Zone			All Ir	ıdia
Entries	Coimbatore	Mandya	Hyderabad	Average	Rank	Average	Rank
ADFM-3	10.1	7.8	7.7	8.5	4	8.0	8
AH-1645	8.8	9.2	8.0	8.7	2	8.2	6
IIMFC 1	11.8	7.4	6.5	8.6	3	8.4	4
ADC-2	10.9	6.5	7.6	8.3	5	8.1	7
Hybrid - FSM2021-1	9.6	8.3	7.1	8.3	5	8.3	5
PJHM-1	8.8	6.5	6.6	7.3	10	8.0	8
IIMFC 2	8.8	7.4	7.5	7.9	6	8.3	5
ADFM-2	8.3	8.3	6.9	7.8	7	8.6	2
MFM-18-27	9.2	6.1	6.1	7.1	11	8.5	3
CMH-12-686	7.4	6.5	7.0	7.0	12	8.5	3
HPFM-11	8.8	7.0	8.0	7.9	6	8.3	5
MFM-18-2	10.5	8.7	6.3	8.5	4	8.3	5
DFH -4	8.8	6.6	7.1	7.5	8	8.3	5
KDFM -7	8.8	6.5	6.0	7.1	11	8.2	6
African Tall (NC)	12.3	8.3	8.3	9.6	1	8.7	1
J-1006 (NC)	7.4	7.0	7.8	7.4	9	8.0	8
COHM-8 (NC)	8.3	5.7	6.4	6.8	13	8.0	8
Mean	9.3	7.3	7.1	7.9		8.3	

Table 1.7 IVTM: Initial Varietal Trial in Forage Maize (New): Plant Height (cm)

Entries	Palampur	Srinagar	Ludhiana	Hisar	Pantnagar	Bhubaneswar	Ranchi	Pusa	Ayodhya	Imphal
ADFM-3	211.0	240.0	191.2	208.3	189.6	157.2	205.2	210.0	178.0	223.9
AH-1645	199.3	252.3	187.2	187.3	182.8	169.5	190.1	205.0	184.0	200.8
IIMFC 1	207.3	273.6	171.4	212.7	198.2	190.3	164.8	188.3	197.0	245.0
ADC-2	205.7	265.6	172.3	131.7	185.9	148.7	174.0	172.6	174.0	235.7
Hybrid - FSM2021-1	189.3	245.3	270.2	166.0	181.3	138.5	162.6	184.3	187.0	183.0
PJHM-1	198.7	242.6	184.5	183.3	195.2	184.2	194.5	185.0	172.0	240.9
IIMFC 2	224.3	243.0	170.2	207.7	208.6	126.5	179.4	195.0	186.5	190.3
ADFM-2	213.0	252.0	209.5	211.0	188.9	154.3	187.7	190.0	185.0	181.3
MFM-18-27	211.7	272.0	185.4	216.0	218.3	178.3	188.2	201.6	174.5	155.1
CMH-12-686	218.0	251.6	160.5	209.3	189.5	143.5	195.5	203.3	169.5	233.9
HPFM-11	201.7	268.6	160.8	214.7	194.3	129.9	185.8	185.0	168.0	210.4
MFM-18-2	190.7	238.6	242.3	214.3	206.9	173.2	179.8	180.3	180.5	206.9
DFH -4	218.7	267.3	200.1	200.3	205.6	163.5	170.9	180.3	171.5	187.3
KDFM -7	203.0	266.3	170.9	182.0	190.2	175.1	162.9	210.0	169.0	228.7
African Tall (NC)	207.7	252.0	248.6	156.0	212.5	202.6	155.4	220.0	166.0	245.4
J-1006 (NC)	242.0	269.0	200.3	205.0	178.8	186.5	170.9	200.0	163.5	208.6
COHM-8 (NC)	210.0	270.0	187.5	192.0	175.5	176.1	209.5	190.0	164.0	205.7
Mean	208.9	257.0	194.9	194.0	194.2	164.6	181.0	194.2	175.9	210.8

Table 1.7 IVTM: Initial Varietal Trial in Forage Maize (New): Plant Height (cm)

Entries	Rai-	Jabal-	Rah-	Urulikan-	Jha-	Hydera-	Coimb-	Man-	Kara-	**Udai-	Aver-	Ra-
Entries	pur	pur	uri	chan	nsi	bad	atore	dya	ikal	pur	age	nk
ADFM-3	201.7	165.3	212.3	230.3	166.3	134.0	237.0	169.1	214.8	151.4	197.1	7
AH-1645	187.2	175.8	188.3	205.1	150.4	133.3	220.0	160.4	185.9	120.3	187.6	15
IIMFC 1	235.7	175.9	189.7	243.1	196.0	177.2	221.5	130.1	198.0	112.9	200.8	4
ADC-2	202.1	154.8	192.3	222.6	176.0	131.6	210.3	164.6	177.3	151.7	184.1	17
Hybrid - FSM2021-1	216.0	154.4	211.6	203.9	161.9	145.0	210.0	138.8	189.4	121.8	186.2	16
PJHM-1	188.3	200.7	211.0	212.1	160.6	133.8	260.0	185.9	173.4	130.2	195.1	10
IIMFC 2	257.1	158.6	207.0	233.8	175.8	177.1	222.5	162.0	179.1	136.1	195.0	11
ADFM-2	191.4	201.1	212.3	226.9	169.1	162.5	228.0	157.0	197.7	150.0	195.7	9
MFM-18-27	247.9	232.2	206.8	210.4	190.7	173.4	220.6	167.3	170.4	115.9	201.1	2
CMH-12-686	202.3	225.5	191.3	208.7	193.3	167.0	230.5	142.7	194.9	122.5	196.4	8
HPFM-11	223.2	176.3	183.6	233.8	171.1	148.0	242.5	157.9	203.2	131.3	192.6	14
MFM-18-2	247.2	230.8	147.5	218.5	184.9	204.8	218.0	173.3	178.3	152.1	200.9	3
DFH -4	243.2	207.6	160.8	207.9	179.6	164.3	218.0	154.7	194.0	138.7	194.5	12
KDFM -7	212.0	173.6	191.0	212.2	180.0	171.4	231.0	161.7	187.3	138.0	193.6	13
African Tall (NC)	245.2	162.2	174.3	249.8	182.4	176.7	247.0	182.2	181.0	139.8	203.5	1
J-1006 (NC)	202.1	176.4	212.6	212.8	179.0	188.9	225.0	142.7	201.5	128.1	198.2	6
COHM-8 (NC)	214.5	202.0	206.7	221.1	195.6	166.5	228.0	159.8	202.8	153.2	198.8	5
Mean	218.6	186.7	194.1	220.8	177.2	162.1	227.6	159.4	189.9	134.9	197.1	

Table 1.8 IVTM: Initial Varietal Trial in Forage Maize (New): Leaf Stem Ratio

Entries	Palam-	Sri-	Ludh-	His-	Pant-	Bhuban-	Ran-	Pu-	Ayo-	Imp-
Entres	pur	nagar	iana	ar	nagar	eswar	chi	sa	dhya	hal
ADFM-3	0.28	0.43		0.56	0.41	0.74	0.59	0.62	0.59	0.70
AH-1645	0.48	0.50	0.20	0.92	0.42	0.84	0.52	0.60	0.63	0.89
IIMFC 1	0.40	0.43	0.18	0.49	0.43	0.72	0.77	0.58	0.61	0.84
ADC-2	0.61	0.42	0.14	0.44	0.54	0.58	0.59	0.59	0.63	0.78
Hybrid - FSM2021-1	0.49	0.44	0.23	0.77	0.48	0.76	0.51	0.68	0.77	0.77
PJHM-1	0.62	0.39	0.22	0.49	0.47	0.89	0.53	0.62	0.61	0.82
IIMFC 2	0.39	0.46	0.25	0.34	0.43	0.56	0.65	0.66	0.74	0.90
ADFM-2	0.34	0.45	0.10	0.55	0.44	0.60	0.56	0.59	0.76	0.67
MFM-18-27	0.39	0.40	0.22	0.31	0.46	0.78	0.46	0.56	0.71	1.04
CMH-12-686	0.62	0.40	0.16	0.50	0.52	0.87	0.65	0.61	0.67	0.81
HPFM-11	0.39	0.43	0.24	0.47	0.47	0.57	0.54	0.55	0.74	0.95
MFM-18-2	0.35	0.41	0.09	0.44	0.43	0.55	0.48	0.45	0.59	1.02
DFH -4	0.55	0.40	0.10	0.37	0.53	0.80	0.91	0.50	0.56	0.93
KDFM -7	0.56	0.41	0.29	0.47	0.51	0.65	0.77	0.44	0.61	0.67
African Tall (NC)	0.61	0.46	0.16	0.50	0.66	0.69	0.78	0.61	0.59	0.72
J-1006 (NC)	0.50	0.52	0.26	0.55	0.45	0.68	0.78	0.61	0.63	0.91
COHM-8 (NC)	0.44	0.37	0.18	0.43	0.47	0.54	0.49	0.59	0.51	0.82
Mean	0.47	0.43	0.19	0.51	0.48	0.70	0.62	0.58	0.64	0.84

Table 1.8 IVTM: Initial Varietal Trial in Forage Maize (New): Leaf Stem Ratio

Entries	Rai-	Jabal-	Rah-	Urulikan-	Jha-	Hydera-	Coimb-	Man-	Karai-	Aver-	Ra-
Entries	pur	pur	uri	chan	nsi	bad	atore	dya	kal	age	nk
ADFM-3	0.33	0.73	0.40	0.58	0.33	0.26	0.23	0.38	0.65	0.49	4
AH-1645	0.38	0.83	0.40	0.59	0.37	0.18	0.30	0.45	0.56	0.53	1
IIMFC 1	0.31	0.90	0.39	0.58	0.27	0.14	0.23	0.41	0.38	0.48	5
ADC-2	0.36	0.54	0.39	0.47	0.41	0.16	0.30	0.37	0.51	0.46	7
Hybrid - FSM2021-1	0.31	0.66	0.38	0.50	0.29	0.19	0.27	0.34	0.35	0.48	5
PJHM-1	0.40	0.98	0.48	0.44	0.40	0.16	0.24	0.42	0.64	0.52	2
IIMFC 2	0.29	0.54	0.38	0.47	0.21	0.20	0.23	0.32	0.71	0.46	7
ADFM-2	0.37	1.00	0.37	0.53	0.41	0.25	0.28	0.42	0.65	0.49	4
MFM-18-27	0.32	1.20	0.43	0.66	0.34	0.21	0.24	0.43	0.75	0.52	2
CMH-12-686	0.40	1.05	0.44	0.59	0.37	0.18	0.26	0.39	0.58	0.53	1
HPFM-11	0.33	0.94	0.33	0.56	0.27	0.12	0.20	0.43	0.49	0.47	6
MFM-18-2	0.35	1.09	0.41	0.66	0.40	0.16	0.23	0.43	0.63	0.48	5
DFH -4	0.33	1.02	0.30	0.44	0.20	0.16	0.30	0.32	0.52	0.49	4
KDFM -7	0.34	0.83	0.43	0.68	0.32	0.19	0.26	0.41	0.44	0.49	4
African Tall (NC)	0.37	0.69	0.40	0.62	0.27	0.21	0.28	0.37	0.51	0.50	3
J-1006 (NC)	0.42	0.94	0.42	0.65	0.37	0.15	0.24	0.41	0.47	0.52	2
COHM-8 (NC)	0.35	1.02	0.39	0.59	0.35	0.37	0.29	0.38	0.37	0.47	6
Mean	0.35	0.88	0.40	0.57	0.33	0.19	0.26	0.39	0.54	0.49	

Table 1.9 IVTM: Initial Varietal Trial in Forage Maize (New): ADF (%), NDF (%) & IVDMD (%)

Entries	ADF (//o)	NDF (%	6)	IVDMD (%)					
Entries	Ludhiana	Rank	Ludhiana	Rank	Hisar	Ludhiana	Average	Rank		
ADFM-3	39.9	9	68.4	7	56.2	51.0	53.6	10		
AH-1645	34.9	2	69.1	8	46.8	52.0	49.4	17		
IIMFC 1	39.7	8	69.8	10	59.3	54.8	57.0	3		
ADC-2	41.0	12	71.0	12	57.3	54.8	56.0	5		
Hybrid - FSM2021-1	37.0	4	65.8	4	50.2	58.7	54.4	8		
PJHM-1	38.4	6	64.7	3	53.9	56.8	55.3	6		
IIMFC 2	41.8	13	73.2	15	48.1	51.8	50.0	16		
ADFM-2	35.2	3	63.9	1	55.9	58.7	57.3	2		
MFM-18-27	39.4	7	67.7	6	52.5	55.6	54.0	9		
CMH-12-686	38.4	6	64.2	2	55.5	59.8	57.6	1		
HPFM-11	40.3	10	70.2	11	58.4	51.4	54.9	7		
MFM-18-2	42.5	15	72.0	14	54.8	50.2	52.5	11		
DFH -4	41.9	14	71.9	13	47.6	54.7	51.1	14		
KDFM -7	39.4	16	69.4	9	51.3	53.4	52.3	12		
African Tall (NC)	37.3	5	67.2	5	56.5	57.2	56.9	4		
J-1006 (NC)	33.8	1	70.2	11	50.3	53.7	52.0	13		
COHM-8 (NC)	40.5	11	63.9	1	50.6	50.2	50.4	15		
Mean	38.9		68.4		53.2	54.4	53.8			

2. AVTM-1: FIRST ADVANCED VARIETAL TRIAL IN FORAGE MAIZE

(Reference Tables: 2.1 to 2.9)

First Advance Varietal Trial in Forage Maize (AVTM-1) comprising of six entries along with three national checks *viz.*, African Tall, J-1006, COHM-8 was conducted at 23 locations in five zones of the country. There were 4 locations each in hill, south and 5 each in north-west, north-east and central zones.

For Green Forage Yield, Entry HQPM-28 showed superiority over the best check by a margin of 4.6% in HZ, 5.2% in CZ, 1.7% at all India level. Entry PFM-13 showed superiority over the best check by a margin of 8.7% in CZ. In other zones and at all India level, other entries were either marginally superior or inferior to checks for GFY.

For Dry Matter Yield, Entry HQPM-28 showed superiority over the best check by a margin of 5.5% in HZ, 5.9% in NWZ and 11.3% in CZ and 3.9% at all India level. Entry DFH-2 showed superiority over the best check by a margin of 16.3% in NWZ. In other zones and at all India level, other entries were either marginally superior or inferior to checks for GFY.

For green fodder per day productivity (q/ha/day), entry HQPM-28 (6.25 q/ha/day) was best followed by national check J-1006 (5.98 q/ha/day). For dry fodder per day productivity, entry HQPM-28 (1.53 q/ha/day) national check J-1006 (1.36 q/ha/day).

For plant height, entry PMC-13 (208.0 cm) was adjudged best performer followed by African Tall (207.5 cm). For leafiness, PFM-13 (0.50) ranked first followed by national check African Tall (0.49).

For crude protein yield (q/ha), entry DFH-2 ranked first for NW zone, Check J-1006 for NE zone, HQPM-28 for central, south as well as at all India level. For crude protein (%), national check J-1006 was top ranker for Hill, NW zones whereas check African Tall top ranked for central zone, Entry PMC-11 was best performer in NE zone, entry HQPM-28 for south zone. At all India level Entries PFM-13 and PMC-11 and national check African Tall were joint best performers (8.6%). For other quality parameters, check J-1006 for ADF, check African tall for NDF and IVDMD performed best.

Table 2.1 AVTM-1: Advanced Varietal Trial in Forage Maize: Green Forage Yield (q/ha)

			F	Iill Zone					· •	ĺ	North	West Zone			
Entries	Palam-	Sri-	Rajo-	Alm-	Aver-	Ra-	Superi-	Ludh-	His-	Pant-	Jal-	**Udai-	Aver-	Ra-	Superi-
	pur	nagar	uri	ora	age	nk	ority%	iana	ar	nagar	ore	pur	age	nk	ority (%)
KDFM-6	275.0	490.0	287.6	243.7	324.1	7		374.3	253.4	256.3	306.9	61.0	297.7	7	
PFM-13	307.4	460.0	266.7	232.8	316.7	8		435.2	252.0	298.5	425.5	50.0	352.8	4	
HQPM 28	437.0	477.3	279.8	480.4	418.6	1	4.6	500.0	255.4	336.4	490.7	53.0	395.6	1	3.9
DFH-2	297.2	444.0	299.2	211.6	313.0	9		416.2	224.7	488.8	415.7	55.0	386.3	2	1.5
PMC-13	385.1	462.3	281.8	249.7	344.7	4		381.9	279.4	244.6	322.2	74.0	307.0	6	
PMC-11	436.1	466.3	254.0	199.5	339.0	6		332.4	276.1	249.8	270.8	62.0	282.3	8	
African Tall (NC)	389.8	524.0	243.3	294.2	362.8	3		305.7	243.5	275.5	213.9	56.0	259.6	9	
J-1006 (NC)	367.6	485.7	316.7	430.5	400.1	2		519.1	296.0	329.8	377.8	69.0	380.7	3	
COHM-8 (NC)	335.1	468.0	260.9	298.4	340.6	5		488.6	260.1	348.7	184.3	62.0	320.4	5	
Mean	358.9	475.3	276.6	293.4	351.1			417.0	260.1	314.3	334.2	60.2	331.4		
CD at 5%	78.7	41.8	2.1	40.8				25.3	36.2	32.8	117.0	10.8			
CV (%)	12.6	5.0	8.2	9.7				7.6	8.2	8.4		10.4			

Note: ** Data is not included in zonal and all India average due to low yield of data

Table 2.1 AVTM-1: Advanced Varietal Trial in Forage Maize: Green Forage Yield (q/ha)

			Nortl	h East Zoi	ne						Centra	l Zone			
Entries	Bhuban-	Ran-	Pu-	Ayod-	Imp-	Aver-	Ra-	Rai-	Jabal-	Rah-	Urulikan-	Jha-	Aver-	Ra-	Superi-
	eswar	chi	sa	hya	hal	age	nk	pur	pur	uri	chan	nsi	age	nk	ority%
KDFM-6	231.3	417.5	346.0	208.3	647.1	370.0	7	231.4	454.1	361.1	321.1	207.4	315.0	8	
PFM-13	355.3	439.3	350.0	345.0	458.2	389.6	2	277.0	544.3	352.9	454.3	442.6	414.2	1	8.7
HQPM 28	295.9	354.2	370.0	232.8	638.2	378.2	4	340.0	547.7	432.5	374.2	311.1	401.1	2	5.2
DFH-2	325.6	420.2	310.0	224.6	361.6	328.4	9	269.2	575.5	319.3	345.6	326.9	367.3	4	
PMC-13	274.6	414.2	390.0	406.3	385.3	374.1	5	217.2	516.5	342.6	369.3	236.1	336.4	6	
PMC-11	344.9	328.5	398.0	263.4	515.8	370.1	6	228.2	516.5	317.4	404.4	230.6	339.4	5	
African Tall (NC)	309.0	371.2	405.0	273.6	569.1	385.6	3	302.2	416.0	320.1	338.2	151.9	305.7	9	
J-1006 (NC)	377.2	437.4	330.0	430.8	623.6	439.8	1	303.8	530.4	376.4	355.4	339.8	381.2	3	
COHM-8 (NC)	255.3	310.1	380.0	210.3	591.8	349.5	8	210.9	533.9	365.1	318.6	171.3	320.0	7	
Mean	307.7	388.1	364.3	288.3	532.3	376.1		264.4	515.0	354.2	364.6	268.6	353.4		
CD at 5%	30.0	35.2	16.8	42.3	32.9			54.4	2.6	50.5	66.9	42.2			
CV (%)	5.6	5.2	8.6	8.9	3.6			11.9	9.1	8.2	10.5	9.1			

Table 2.1 AVTM-1: Advanced Varietal Trial in Forage Maize: Green Forage Yield (q/ha)

		So	outh Zone					All Ind	ia
Entries	Hydera-	Coimb-	Man-	Kara-	Aver-	Ra-	Aver-	Ra-	Superi-
	bad	atore	dya	ikal	age	nk	age	nk	ority%
KDFM-6	357.1	513.9	350.7	280.4	375.5	6	337.0	9	
PFM-13	312.4	500.0	289.6	283.6	346.4	8	367.4	3	
HQPM 28	506.5	486.1	438.8	283.3	428.7	2	403.1	1	1.7
DFH-2	342.6	431.9	300.1	279.1	338.4	9	346.8	6	
PMC-13	353.7	555.5	355.7	275.5	385.1	5	350.0	4	
PMC-11	410.4	470.8	317.3	354.2	388.2	3	344.8	7	
African Tall (NC)	463.7	600.0	443.2	230.8	434.4	1	349.3	5	
J-1006 (NC)	314.3	594.4	305.4	280.6	373.7	7	396.5	2	
COHM-8 (NC)	448.7	472.2	351.2	268.8	385.2	4	342.4	8	
Mean	389.9	513.9	350.2	281.8	384.0		359.7		
CD at 5%	46.4	38.4	27.2	28.5					
CV (%)	6.8	4.3	10.5	5.4					

Table 2.2 AVTM-1: Advanced Varietal Trial in Forage Maize: Dry Matter Yield (q/ha)

			Hill Z		0	·		\ 1 /	North	west Zo	ne		
Entries	Palam-	Sri-	Alm-	Aver-	Ra-	Superi-	Ludh-	His-	Pant-	Jal-	Aver-	Ra-	Superi-
	pur	nagar	ora	age	nk	ority%	iana	ar	nagar	ore	age	nk	ority%
KDFM-6	93.2	119.0	70.9	94.4	7		82.3	30.6	47.4	53.2	53.4	7	
PFM-13	101.3	111.7	64.3	92.4	8		92.4	30.5	60.9	73.7	64.4	6	
HQPM 28	145.9	115.3	99.8	120.3	1	5.5	115.0	28.6	73.3	85.1	75.5	2	5.9
DFH-2	96.4	108.0	69.7	91.4	9		115.6	36.8	107.1	72.1	82.9	1	16.3
PMC-13	128.4	109.7	56.2	98.1	6		100.0	52.1	51.6	55.7	64.8	5	
PMC-11	148.9	113.7	59.3	107.3	4		64.2	25.9	49.0	46.7	46.4	9	
African Tall (NC)	124.5	121.0	77.4	107.6	3		62.7	35.5	54.0	37.3	47.4	8	
J-1006 (NC)	120.7	117.3	104.3	114.1	2		113.6	40.8	65.0	65.7	71.3	3	
COHM-8 (NC)	111.6	125.0	63.8	100.1	5		122.1	36.0	73.2	32.0	65.8	4	
Mean	119.0	115.6	74.0	102.9			96.4	35.2	64.6	58.0	63.6		
CD at 5%	31.0	9.0	8.5				3.4	9.8	8.2	16.9			
CV%	14.9	4.5	8.0				8.6	16.4	11.6				

Table 2.2 AVTM-1: Advanced Varietal Trial in Forage Maize: Dry Matter Yield (q/ha)

			North	East Zone	;		-		_		Central 2	Zone			
Entries	Bhuban-	Ran-	Pu-	Ayod-	Imp-	Aver-	Ra-	Rai-	Jabal-	Rah-	Urulikan-	Jha-	Aver-	Ra-	Superi-
	eswar	chi	sa	hya	hal	age	nk	pur	pur	uri	chan	nsi	age	nk	ority%
KDFM-6	56.4	75.5	84.3	50.0	105.4	74.3	7	57.5	103.0	70.4	57.5	58.5	69.4	6	
PFM-13	85.8	66.8	85.5	84.5	68.9	78.3	3	69.3	126.8	58.6	73.6	103.0	86.3	3	
HQPM 28	74.0	58.9	90.8	61.6	97.5	76.6	5	87.0	125.7	111.8	70.3	86.1	96.2	1	11.3
DFH-2	81.7	80.7	79.6	60.6	65.4	73.6	8	67.1	134.1	61.4	64.3	89.0	83.2	4	
PMC-13	68.3	62.3	91.5	105.6	71.2	79.8	2	54.9	117.3	63.1	56.1	58.1	69.9	5	
PMC-11	84.0	53.6	88.5	72.4	87.4	77.2	4	56.8	117.2	54.4	59.7	55.2	68.7	8	
African Tall (NC)	77.6	59.4	92.6	71.1	79.7	76.1	6	78.9	92.8	41.9	63.5	32.5	61.9	9	
J-1006 (NC)	94.5	65.8	82.2	107.7	101.9	90.4	1	79.9	120.7	66.3	72.0	93.2	86.4	2	
COHM-8 (NC)	60.1	48.1	86.6	55.7	101.0	70.3	9	51.7	122.5	69.2	51.6	51.5	69.3	7	
Mean	75.8	63.4	86.8	74.3	86.5	77.4		67.0	117.8	66.3	63.2	69.7	76.8		
CD at 5%	7.8	19.1	5.4	11.7	10.6			14.8	0.60	9.1	11.3	15.9			
CV%	5.9	3.2	7.3	6.5	7.1			12.7	9.1	7.9	10.3	13.2			

Table 2.2 AVTM-1: Advanced Varietal Trial in Forage Maize: Dry Matter Yield (q/ha)

			South Zon	ne				All Indi	a
Entries	Hydera-	Coimb-	Man-	Karai-	Aver-	Ra-	Aver-	Ra-	Superi-
	bad	atore	dya	kal	age	nk	age	nk	ority%
KDFM-6	69.6	111.9	69.8	75.9	81.8	6	73.5	8	
PFM-13	61.9	116.2	70.9	71.1	80.0	8	79.9	4	
HQPM 28	101.3	105.3	102.2	75.5	96.1	1	91.0	1	3.9
DFH-2	70.0	100.7	78.7	75.8	81.3	7	81.6	3	
PMC-13	63.8	130.3	64.6	71.8	82.6	3	77.7	5	
PMC-11	77.7	104.7	68.4	101.9	88.1	2	75.7	6	
African Tall (NC)	91.0	121.8	114.8	56.8	96.1	1	75.6	7	
J-1006 (NC)	59.8	135.1	64.5	69.1	82.1	4	87.6	2	
COHM-8 (NC)	86.6	107.2	74.5	59.9	82.0	5	75.7	6	
Mean	<i>75.7</i>	114.8	78.7	73.1	85.6		79.8		
CD at 5%	12.8	8.6	5.8	9.3					
CV%	9.6	4.3	10.1	6.8					

Table 2.3 AVTM-1: Advanced Varietal Trial in Forage Maize: Green Forage Yield (q/ha/day)

Entries	Palampur	Srinagar	Ludhiana	Hisar	Pantnagar	Bhubaneswar	Ranchi	Pusa	Ayodhya
KDFM-6	3.86	6.70	4.74	5.46	3.61	3.54	7.08	6.41	3.20
PFM-13	4.82	5.91	5.51	5.18	4.26	5.38	7.62	6.48	5.00
HQPM 28	6.16	5.82	6.33	5.85	5.34	4.80	6.77	7.55	3.42
DFH-2	4.27	5.78	5.27	4.85	7.19	5.04	7.20	5.78	3.35
PMC-13	5.83	5.72	4.83	5.55	3.54	4.38	6.94	7.41	5.88
PMC-11	6.61	5.72	4.21	5.64	3.47	5.39	5.41	7.51	4.11
African Tall (NC)	5.18	6.55	3.87	4.15	3.58	4.63	5.68	7.56	4.08
J-1006 (NC)	5.40	6.30	6.57	6.17	4.78	5.55	7.86	6.27	6.15
COHM-8 (NC)	4.94	6.12	6.18	5.86	5.45	4.01	5.03	7.76	3.37
Mean	5.23	6.07	5.28	5.41	4.58	4.75	6.62	6.97	4.28

Table 2.3 AVTM-1: Advanced Varietal Trial in Forage Maize: Green Forage Yield (q/ha/day)

Entries	Raipur	Rahuri	Urulikanchan	Jhansi	Hyderabad	Coimbatore	Mandya	Karaikal	Average	Rank
KDFM-6	4.45	7.04	5.18	3.15	5.39	7.79	6.12	3.87	5.15	9
PFM-13	5.23	6.38	7.83	7.22	5.04	7.58	4.92	3.66	5.77	3
HQPM 28	6.94	8.43	6.80	5.55	7.84	7.72	7.48	3.47	6.25	1
DFH-2	5.49	5.95	6.17	5.76	5.20	7.08	5.22	3.78	5.49	6
PMC-13	4.34	6.31	6.37	3.49	5.30	8.68	6.30	3.52	5.55	4
PMC-11	4.56	5.74	6.97	3.68	6.51	7.36	5.93	4.97	5.52	5
African Tall (NC)	5.04	5.34	5.46	2.13	7.40	9.23	7.06	3.02	5.29	8
J-1006 (NC)	5.84	7.06	5.92	5.51	4.91	8.87	5.09	3.41	5.98	2
COHM-8 (NC)	4.22	6.60	5.69	2.95	7.08	7.74	6.45	3.49	5.47	7
Mean	5.12	6.54	6.27	4.38	6.07	8.00	6.06	3.69	5.61	

Table 2.4 AVTM-1: Advanced Varietal Trial in Forage Maize: Dry Matter Yield (q/ha/day)

Entries	Palampur	Srinagar	Ludhiana	Hisar	Pantnagar	Bhubaneswar	Ranchi	Pusa	Ayodhya
KDFM-6	2.12	1.50	1.04	0.66	0.67	0.86	1.28	1.56	0.76
PFM-13	2.53	1.53	1.17	0.63	0.87	1.30	1.16	1.58	1.22
HQPM 28	3.30	1.56	1.46	0.66	1.16	1.20	1.13	1.85	0.91
DFH-2	2.18	1.56	1.46	0.79	1.57	1.26	1.38	1.49	0.91
PMC-13	3.13	1.46	1.27	1.03	0.75	1.09	1.04	1.74	1.52
PMC-11	3.68	1.60	0.81	0.53	0.68	1.31	0.88	1.67	1.13
African Tall (NC)	2.58	1.16	0.79	0.61	0.70	1.16	0.91	1.73	1.06
J-1006 (NC)	2.82	1.36	1.44	0.85	0.94	1.39	1.18	1.56	1.53
COHM-8 (NC)	2.63	2.16	1.55	0.81	1.14	0.94	0.78	1.77	0.88
Mean	2.77	1.54	1.22	0.73	0.94	1.17	1.08	1.66	1.10

Table 2.4 AVTM-1: Advanced Varietal Trial in Forage Maize: Dry Matter Yield (q/ha/day)

Entries	Rai-	Rah-	Urulikan-	Hydera-	Coimb-	Man-	Karai-	Aver-	Ra-
Entries	pur	uri	chan	bad	atore	dya	kal	age	nk
KDFM-6	1.11	1.37	0.93	1.05	1.81	1.22	1.05	1.19	7
PFM-13	1.31	1.06	1.27	1.00	1.94	1.20	0.92	1.29	5
HQPM 28	1.78	2.18	1.28	1.57	1.81	1.74	0.92	1.53	1
DFH-2	1.37	1.14	1.15	1.06	1.94	1.37	1.03	1.35	3
PMC-13	1.10	1.16	0.97	0.96	1.96	1.14	0.92	1.33	4
PMC-11	1.14	0.98	1.03	1.23	1.85	1.28	1.43	1.33	4
African Tall (NC)	1.32	0.70	1.02	1.45	1.69	1.82	0.74	1.22	6
J-1006 (NC)	1.54	1.24	1.20	0.93	1.89	1.08	0.84	1.36	2
COHM-8 (NC)	1.03	1.25	0.92	1.37	1.89	1.37	0.78	1.33	4
Mean	1.30	1.23	1.09	1.18	1.86	1.36	0.96	1.33	

Table 2.5 AVTM-1: Advanced Varietal Trial in Forage Maize: Crude Protein Yield (q/ha)

	Hill Z	Zone		Nor	th West Z	one				North Ea	st Zone		
Entries	Palam-	Ra-	Ludh-	His-	Pant-	Aver-	Ra-	Bhuban-	Ran-	Ayod-	Imp-	Aver-	Ra-
	pur	nk	iana	ar	nagar	age	nk	eswar	chi	hya	hal	age	nk
KDFM-6	9.2	8	6.2	2.6	4.6	4.5	7	4.3	4.5	3.4	9.8	5.5	8
PFM-13	10.6	6	9.2	2.6	5.3	5.7	6	7.1	5.7	5.7	5.8	6.1	3
HQPM 28	14.8	1	8.3	2.6	7.7	6.2	4	5.4	4.6	4.6	7.8	5.6	7
DFH-2	10.4	7	8.7	3.2	9.4	7.1	1	6.0	7.7	4.1	5.2	5.7	6
PMC-13	11.6	4	8.4	4.4	4.5	5.8	5	5.1	5.7	7.5	5.5	5.9	4
PMC-11	14.8	1	4.5	2.6	3.9	3.7	8	6.9	5.8	5.3	6.9	6.2	2
African Tall (NC)	13.1	3	5.3	3.5	4.7	4.5	7	5.7	6.9	4.6	6.1	5.8	5
J-1006 (NC)	13.4	2	10.8	3.4	6.3	6.8	2	6.9	5.1	7.8	8.9	7.2	1
COHM-8 (NC)	11.1	5	9.2	3.4	7.0	6.5	3	4.7	3.9	4.1	8.0	5.2	9
Mean	12.1		7.8	3.1	5.9	5.6		5.8	5.6	5.2	7.1	5.9	

Table 2.5 AVTM-1: Advanced Varietal Trial in Forage Maize: Crude Protein Yield (q/ha)

			Cent	ral Zone				So	outh Zone			All I	ndia
Entries	Rai-	Jabal-	Rah-	Urulikan-	Aver-	Ra-	Coimb-	Man-	Hydera-	Aver-	Ra-	Aver-	Ra-
	pur	pur	uri	chan	age	nk	atore	dya	bad	age	nk	age	nk
KDFM-6	4.4	8.0	5.1	5.3	5.7	8	10.7	4.9	4.8	6.8	5	5.9	7
PFM-13	6.2	10.1	5.8	6.5	7.1	2	10.7	4.7	4.9	6.8	5	6.7	3
HQPM 28	8.3	10.0	9.9	6.1	8.6	1	9.7	8.5	8.3	8.8	1	7.8	1
DFH-2	5.5	11.2	7.7	4.1	7.1	2	8.0	4.8	4.7	5.8	8	6.7	3
PMC-13	4.2	9.2	5.9	5.0	6.0	7	10.8	5.4	4.8	7.0	4	6.5	5
PMC-11	4.5	9.1	6.2	5.4	6.3	5	8.7	5.4	6.0	6.7	6	6.4	6
African Tall (NC)	7.8	7.1	4.5	5.2	6.2	6	8.5	8.5	7.1	8.0	2	6.6	4
J-1006 (NC)	7.8	9.5	5.3	5.5	7.0	3	10.0	4.8	4.8	6.5	7	7.4	2
COHM-8 (NC)	3.8	9.7	7.8	4.3	6.4	4	8.9	5.9	6.8	7.2	3	6.6	4
Mean	5.8	9.3	6.5	5.2	6.7		9.6	5.9	5.8	7.1		6.7	

Table 2.6 AVTM-1: Advanced Varietal Trial in Forage Maize: Crude Protein (%)

Entries	Hill Zo	ne			North West	Zone	
Entries	Palampur	Rank	Ludhiana	Hisar	Pantnagar	Average	Rank
KDFM-6	9.9	5	7.5	8.7	9.6	8.6	4
PFM-13	10.5	3	9.9	8.5	8.8	9.0	2
HQPM 28	10.2	4	7.2	9.1	10.5	8.9	3
DFH-2	10.8	2	7.5	8.7	8.8	8.3	6
PMC-13	9.0	6	8.4	8.4	8.8	8.5	5
PMC-11	9.9	5	7.0	10.2	7.9	8.3	6
African Tall (NC)	10.5	3	8.4	9.8	8.8	9.0	2
J-1006 (NC)	11.1	1	9.5	8.3	9.6	9.1	1
COHM-8 (NC)	9.9	5	7.5	9.5	9.6	8.9	3
Mean	10.2		8.1	9.0	9.1	8.7	

Table 2.6 AVTM-1: Advanced Varietal Trial in Forage Maize: Crude Protein (%)

		N	orth East	Zone					Centr	al Zone		
Entries	Bhuban-	Ran-	Ayod-	Imp-	Aver-	Ra-	Rai-	Jabal-	Rah-	Urulikan-	Aver-	Ra
	eswar	chi	hya	hal	age	nk	pur	pur	uri	chan	age	-nk
KDFM-6	7.5	6.0	6.9	9.3	7.4	6	7.6	7.8	7.3	9.2	8.0	7
PFM-13	8.3	8.6	6.8	8.4	8.0	3	8.9	8.0	9.8	8.8	8.9	3
HQPM 28	7.4	7.8	7.5	4.0	6.7	7	9.6	8.0	8.8	8.6	8.7	4
DFH-2	7.3	9.6	6.7	7.9	7.9	4	8.2	8.3	12.6	6.4	8.9	3
PMC-13	7.4	9.1	7.1	7.7	7.8	5	7.7	7.8	9.3	8.9	8.4	5
PMC-11	8.3	10.8	7.3	7.9	8.6	1	7.9	7.8	11.3	9.0	9.0	2
African Tall (NC)	7.3	11.6	6.4	7.6	8.2	2	9.8	7.7	10.8	8.1	9.1	1
J-1006 (NC)	7.3	7.8	7.2	8.7	7.8	5	9.8	7.9	8.1	7.6	8.3	6
COHM-8 (NC)	7.8	8.1	7.4	7.9	7.8	5	7.3	8.0	11.3	8.3	8.7	4
Mean	7.6	8.8	7.0	7.7	7.8		8.5	7.9	9.9	8.3	8.7	

Table 2.6 AVTM-1: Advanced Varietal Trial in Forage Maize: Crude Protein (%)

		Sout	h Zone			All	India
Entries	Coimb-	Man-	Hydera-	Aver-	Ra-	Aver-	Ra-
	atore	dya	bad	age	nk	age	nk
KDFM-6	9.6	7.0	6.9	7.8	5	8.1	5
PFM-13	9.2	6.6	7.9	7.9	4	8.6	1
HQPM 28	9.2	8.3	8.2	8.6	1	8.3	3
DFH-2	7.9	6.1	6.7	6.9	8	8.2	4
PMC-13	8.3	8.3	7.6	8.1	2	8.3	3
PMC-11	8.3	7.9	7.7	8.0	3	8.6	1
African Tall (NC)	7.0	7.4	7.7	7.4	7	8.6	1
J-1006 (NC)	7.4	7.4	8.0	7.6	6	8.4	2
COHM-8 (NC)	8.3	7.9	7.9	8.0	3	8.4	2
Mean	8.4	7.4	7.6	7.8		8.4	

Table 2.7 AVTM-1: Advanced Varietal Trial in Forage Maize: Plant Height (cm)

Entries	Palampur	Srinagar	Ludhiana	Hisar	Pantnagar	Udaipur	Bhubaneswar	Ranchi	Pusa	Ayodhya	Imphal
KDFM-6	151.7	276.0	196.4	209.0	180.6	148.0	162.3	253.3	220.0	178.3	211.0
PFM-13	164.0	234.6	236.8	206.3	184.8	139.0	194.3	218.6	180.3	225.5	196.1
HQPM 28	173.7	247.3	180.9	188.3	186.9	137.0	178.3	200.7	200.0	210.5	194.7
DFH-2	130.3	249.6	182.4	219.7	187.5	145.0	185.7	223.7	191.0	197.3	158.4
PMC-13	228.0	255.6	170.5	240.0	198.3	159.0	174.6	213.6	208.3	230.0	195.1
PMC-11	170.3	247.6	194.9	245.3	205.8	125.0	190.6	218.4	216.6	201.3	217.7
African Tall (NC)	175.7	277.6	185.6	205.0	209.4	160.0	182.2	271.0	230.0	189.9	252.3
J-1006 (NC)	182.0	274.6	178.4	210.7	177.7	131.0	198.7	231.7	186.6	270.5	209.0
COHM-8 (NC)	208.0	266.3	209.8	211.3	186.5	131.0	165.1	219.2	205.0	200.5	185.3
Mean	176.0	258.8	192.9	215.1	190.8	141.7	181.3	227.8	204.2	211.5	202.2

Table 2.7 AVTM-1: Advanced Varietal Trial in Forage Maize: Plant Height (cm)

Entries	Rai-	Jabal-	Rah-	Urulikan-	Jha-	Hydera-	Coimb-	Man-	Kara-	Aver-	Ra-
Entries	pur	pur	uri	chan	nsi	bad	atore	dya	ikal	age	nk
KDFM-6	214.4	201.0	174.0	199.9	187.1	195.1	275.0	199.8	229.2	203.1	5
PFM-13	210.2	240.0	168.0	222.8	189.1	163.3	252.0	177.6	218.2	201.1	7
HQPM 28	195.1	227.3	162.5	202.7	175.7	189.1	242.0	171.6	201.9	193.3	9
DFH-2	198.5	294.3	172.0	195.6	172.2	180.1	210.5	205.9	224.3	196.2	8
PMC-13	212.2	218.0	169.0	236.3	198.9	188.0	240.2	197.2	226.7	208.0	1
PMC-11	212.5	215.0	187.0	236.6	201.0	188.5	238.0	183.2	250.5	207.3	3
African Tall (NC)	237.1	197.7	156.5	182.3	194.1	188.5	254.0	214.4	186.4	207.5	2
J-1006 (NC)	201.9	219.7	171.2	200.7	186.7	192.2	235.0	196.9	235.9	204.6	4
COHM-8 (NC)	191.1	225.3	176.5	208.2	177.8	201.5	264.0	192.8	210.1	201.8	6
Mean	208.1	226.5	170.7	209.4	187.0	187.4	245.6	193.3	220.4	202.5	

Table 2.8 AVTM-1: Advanced Varietal Trial in Forage Maize: Leaf Stem Ratio

Entries	Palampur	Srinagar	Ludhiana	Hisar	Pantnagar	Bhubaneswar	Ranchi	Pusa	Ayodhya	Imphal
KDFM-6	0.40	0.43	0.18	0.50	0.51	0.54	0.82	0.58	0.43	0.79
PFM-13	0.41	0.48	0.17	0.38	0.33	0.78	0.83	0.55	0.61	0.75
HQPM 28	0.32	0.4	0.17	0.36	0.29	0.64	0.63	0.61	0.58	0.85
DFH-2	0.37	0.44	0.30	0.33	0.63	0.75	0.67	0.52	0.56	0.58
PMC-13	0.58	0.43	0.12	0.40	0.48	0.52	0.68	0.65	0.63	0.75
PMC-11	0.40	0.45	0.18	0.44	0.44	0.67	0.76	0.66	0.57	0.87
African Tall (NC)	0.45	0.41	0.28	0.67	0.56	0.71	0.72	0.69	0.44	0.96
J-1006 (NC)	0.45	0.42	0.26	0.39	0.38	0.81	0.81	0.56	0.66	0.77
COHM-8 (NC)	0.34	0.39	0.20	0.46	0.32	0.59	0.83	0.62	0.60	1.02
Mean	0.41	0.43	0.21	0.44	0.44	0.67	0.75	0.60	0.56	0.82

Table 2.8 AVTM-1: Advanced Varietal Trial in Forage Maize: Leaf Stem Ratio

Entries	Raipur	Jabalpur	Rahuri	Urulikanchan	Jhansi	Hyderabad	Coimbatore	Mandya	Karaikal	Average	Rank
KDFM-6	0.38	0.38	0.39	0.74	0.35	0.16	0.26	0.39	0.55	0.46	5
PFM-13	0.38	0.73	0.44	0.76	0.36	0.27	0.25	0.53	0.47	0.50	1
HQPM 28	0.33	0.71	0.32	0.49	0.33	0.15	0.27	0.37	0.38	0.43	6
DFH-2	0.31	1.14	0.39	0.53	0.28	0.12	0.20	0.32	0.40	0.47	4
PMC-13	0.34	0.53	0.35	0.52	0.31	0.17	0.21	0.36	0.64	0.46	5
PMC-11	0.35	0.46	0.36	0.63	0.30	0.18	0.24	0.33	0.38	0.46	5
African Tall (NC)	0.44	0.27	0.47	0.61	0.24	0.25	0.24	0.41	0.54	0.49	2
J-1006 (NC)	0.37	0.58	0.46	0.66	0.34	0.15	0.26	0.36	0.35	0.48	3
COHM-8 (NC)	0.27	0.68	0.39	0.51	0.35	0.21	0.22	0.35	0.47	0.46	5
Mean	0.35	0.61	0.40	0.61	0.32	0.18	0.24	0.38	0.46	0.47	

Table 2.9 AVTM-1: Advanced Varietal Trial in Forage Maize: ADF (%) & NDF (%)

			A	DF (%)						N	DF (%)			
Entries	Palam-	Rah-	Ludh-	Pant-	Ran-	Aver-	Ra-	Rah-	Ludh-	Pant-	Palam-	Ran-	Aver-	Ra-
	pur	uri	iana	nagar	chi	age	nk	uri	iana	nagar	pur	chi	age	nk
KDFM-6	59.0	51.7	38.7	58.2	53.2	52.2	8	73.0	67.1	65.0	65.8	71.6	68.5	8
PFM-13	58.4	45.2	36.5	57.4	46.3	48.8	5	66.8	65.4	67.8	68.2	69.2	67.5	6
HQPM 28	57.2	43.4	38.1	57.8	44.1	48.1	3	63.2	66.4	68.2	68.6	64.3	66.1	3
DFH-2	55.8	45.9	39.8	56.6	47.2	49.1	6	67.1	68.7	65.4	65.8	70.3	67.5	6
PMC-13	56.6	45.1	36.4	57.6	46.2	48.4	4	66.7	68.5	67.0	66.6	68.3	67.4	5
PMC-11	58.6	44.7	40.1	59.0	45.4	49.6	7	65.3	67.4	68.2	65.4	68.2	66.9	4
African Tall (NC)	56.2	43.3	36.4	57.4	44.3	47.5	2	59.8	64.5	66.0	67.0	66.5	64.8	1
J-1006 (NC)	54.6	44.8	35.6	55.8	45.1	47.2	1	65.5	63.4	67.0	66.0	68.2	66.0	2
COHM-8 (NC)	57.4	44.4	36.4	57.0	46.7	48.4	4	63.8	69.8	67.0	67.8	69.4	67.6	7
Mean	57.1	45.4	37.6	57.4	46.5	48.8		65.7	66.8	66.8	66.8	68.4	66.9	

Table 2.9AVTM-1: Advanced Varietal Trial in Forage Maize: IVDMD (%)

E4			IVDMD (%)			
Entries	Hisar	Rahuri	Ludhiana	Ranchi	Average	Rank
KDFM-6	42.0	48.8	53.4	46.9	47.8	8
PFM-13	48.7	53.9	58.8	52.4	53.4	3
HQPM 28	51.0	55.3	50.2	54.1	52.7	4
DFH-2	50.4	53.3	52.4	51.7	51.9	7
PMC-13	47.9	53.9	55.4	52.4	52.4	5
PMC-11	50.9	54.3	51.2	53.1	52.4	5
African Tall (NC)	50.8	55.3	54.7	53.9	53.7	1
J-1006 (NC)	49.8	54.2	56.6	53.3	53.5	2
COHM-8 (NC)	47.8	54.5	54.7	52.1	52.3	6
Mean	48.8	53.7	54.2	52.2	52.2	

3. AVTM-2: SECOND ADVANCED VARIETAL TRIAL IN FORAGE MAIZE

(Reference Tables: 3.1 to 3.9)

Second Advance Varietal Trial in Forage Maize (AVTM-2) comprising of one entry PFM-12 along with three national checks *viz.*, African Tall, J-1006, COHM-8 was conducted at 11 locations in two zones of the country. There were 5 locations in north-west zone and 6 in central zone.

For green fodder yield, dry matter yield and crude protein yield (q/ha), National check J-1006 was top ranked in both NW and central zone as well as combining both zones. For green and dry fodder per day productivity (q/ha/day), National check J-1006 was top ranked in both NW and central zone as well as combining both zones

For crude protein (%), National check African Tall was top ranked in both NW and central zone as well as combining both zones. For ADF check COBHM-8 and for NDF and IVDMD check African Tall were best perfumers.

For leafiness, check COHM-8 was best performer.

4. AVTM-2 (seed): SECOND ADVANCED VARIETAL TRIAL IN FORAGE MAIZE (SEED)

(Reference Tables: 4.1)

Second Advance Varietal Trial in Forage Maize (AVTM-2) comprising of one entry PFM-12 along with three national checks *viz.*, African Tall, J-1006, COHM-8 was conducted at 6 locations in two zones of the country. There were 2 locations in north-west zone and 4 in central zone.

National check African Tall was top ranked in NW zone whereas Check COHM-8 top ranked for central zone as well as combining both zones.

Table 3.1 AVTM-2: Second Advanced Varietal Trial in Forage Maize: Green Forage Yield (q/ha)

Entries	North West Zone											
Entries	Ludhiana	Hisar	Pantnagar	Jalore	**Udaipur	Average	Rank					
PFM-12	404.3	234.7	349.5	220.8	67.0	302.3	2					
J-1006 (NC)	443.1	254.8	542.3	245.8	65.0	371.5	1					
African Tall (NC)	280.8	235.7	428.8	233.3	58.0	294.7	3					
COHM-8 (NC)	399.7	243.6	338.6	151.7	65.0	283.4	4					
Mean	382.0	242.2	414.8	212.9	63.8	313.0						
CD at 5%	12.8	26.5	53.6	61.9	5.1							
CV (%)	7.81	7.5	13.3		5.8							

Note: ** Data is not included in zonal and all India average due to low yield of data

Table 3.1 AVTM-2: Second Advanced Varietal Trial in Forage Maize: Green Forage Yield (q/ha)

Entries		Central Zone											
Entries	Anand	Jabalpur	Rahuri	Urulikanchan	Raipur	Jhansi	Average	Rank	Average	Rank			
PFM-12	372.3	522.6	302.2	391.9	194.2	250.5	338.9	4	324.3	4			
J-1006 (NC)	473.7	514.3	387.0	514.0	326.7	334.0	424.9	1	403.6	1			
African Tall (NC)	431.7	616.3	337.5	503.4	360.0	291.0	423.3	2	371.9	2			
COHM-8 (NC)	384.2	499.7	311.6	408.6	241.7	315.0	360.1	3	329.4	3			
Mean	415.5	538.2	334.6	454.5	280.6	297.6	386.8		357.3				
CD at 5%	54.2	4.1	36.0	67.1	20.7	42.9							
CV (%)	9.5	12.6	7.8	10.6	5.3	10.5							

Table 3.2 AVTM-2: Second Advanced Varietal Trial in Forage Maize: Dry Matter Yield (q/ha)

Entrica		North West Zone										
Entries	Ludhiana	Hisar	Pantnagar	Jalore	Average	Rank						
PFM-12	92.9	24.4	69.2	38.6	56.3	3						
J-1006 (NC)	97.5	40.7	93.3	43.0	68.6	1						
African Tall (NC)	56.1	34.7	79.8	41.2	52.9	4						
COHM-8 (NC)	102	44.7	65.4	27.0	59.8	2						
Mean	87.1	36.1	76.9	37.4	59.4							
CD at 5%	3.2	8.6	6.4	11.3								
CV%	8.0	16.1	7.6									

Table 3.2 AVTM-2: Second Advanced Varietal Trial in Forage Maize: Dry Matter Yield (q/ha)

Entries				Central Zor	ne				All In	dia
Entries	Anand	Jabalpur	Rahuri	Urulikanchan	Raipur	Jhansi	Average	Rank	Average	Rank
PFM-12	62.9	117.8	56.1	52.2	43.6	56.9	64.9	4	61.5	3
J-1006 (NC)	79.8	108.0	68.7	85.7	79.4	73.6	82.5	1	77.0	1
African Tall (NC)	76.0	133.2	50.2	61.6	82.8	52.4	76.0	2	66.8	2
COHM-8 (NC)	66.8	110.6	61.5	57.5	55.4	77.0	71.5	3	66.8	2
Mean	71.4	117.4	59.1	64.3	65.3	65.0	73.7		68.0	
CD at 5%	11.6	0.6	6.1	9.3	4.4	12.7				
CV%	11.8	11.1	7.5	10.4	4.9	14.2				

Table 3.3 AVTM-2: Second Advanced Varietal Trial in Forage Maize: Green Forage Yield (q/ha/day)

Entries	Ludhiana	Hisar	Pantnagar	Anand	Rahuri	Urulikanchan	Raipur	Jhansi	Average	Rank
PFM-12	5.12	5.16	4.99	6.21	5.21	7.13	3.73	4.15	5.21	4
J-1006 (NC)	5.61	4.39	7.86	8.03	6.47	9.34	5.83	5.41	6.62	1
African Tall (NC)	3.55	4.86	5.17	6.08	6.01	7.75	5.81	4.04	5.41	3
COHM-8 (NC)	5.06	5.32	5.37	7.39	5.97	7.43	4.93	5.54	5.88	2
Mean	4.84	4.93	5.85	6.93	5.91	7.91	5.08	4.79	5.78	

Table 3.4 AVTM-2: Second Advanced Varietal Trial in Forage Maize: Dry Matter Yield (q/ha/day)

						(1	200, 02003)		
Entries	Ludhiana	Hisar	Pantnagar	Anand	Rahuri	Urulikanchan	Raipur	Average	Rank
PFM-12	1.18	0.54	0.99	1.05	0.97	0.95	0.84	0.93	4
J-1006 (NC)	1.23	0.70	1.35	1.35	1.15	1.56	1.42	1.25	1
African Tall (NC)	0.71	0.72	0.96	1.07	0.89	0.95	1.34	0.95	3
COHM-8 (NC)	1.29	0.98	1.04	1.28	1.18	1.05	1.13	1.14	2
Mean	1.10	0.74	1.09	1.19	1.05	1.13	1.18	1.07	

Table 3.5 AVTM-2: Second Advanced Varietal Trial in Forage Maize: Crude Protein Yield (q/ha)

J-1006 (NC) African Tall (NC)		Nor	th West Z	Zone				C	Central Zone				All India	
Entries	Ludh-	His-	Pant-	Aver-	Ra-	Ana-	Jabal-	Rah-	Urulikan-	Rai-	Aver-	Ra-	Aver-	Ra-
	iana	ar	nagar	age	nk	nd	pur	uri	chan	pur	age	nk	age	nk
PFM-12	7.9	2.5	6.7	5.7	3	3.1	8.3	4.0	4.8	3.3	4.7	4	5.1	4
J-1006 (NC)	8.2	4.0	9.0	7.0	1	3.9	7.6	5.2	8.6	7.5	6.6	1	6.7	1
African Tall (NC)	4.7	3.8	8.4	5.6	4	3.7	9.6	4.8	5.1	8.3	6.3	2	6.0	2
COHM-8 (NC)	8.7	4.9	6.9	6.8	2	3.3	7.6	4.5	5.1	4.5	5.0	3	5.7	3
Mean	7.4	3.8	7.7	6.3		3.5	8.3	4.6	5.9	5.9	5.6		5.9	

Table 3.6 AVTM-2: Second Advanced Varietal Trial in Forage Maize: Crude Protein (%)

		Nort	h West Zo	ne				Ce	ntral Zone				All I	ndia
Entries	Ludh-	His-	Pant-	Aver-	Ra-	Ana-	Jabal-	Rah-	Urulikan-	Rai-	Aver-	Ra-	Aver-	Ra-
	iana	ar	nagar	age	nk	nd	pur	uri	chan	pur	age	nk	age	nk
PFM-12	8.5	10.0	9.6	9.4	2	4.9	7.1	7.1	9.2	7.6	7.2	3	8.0	4
J-1006 (NC)	8.4	9.7	9.6	9.3	3	4.9	7.0	7.6	10.1	9.5	7.8	2	8.3	2
African Tall (NC)	8.4	11.0	10.5	10.0	1	4.9	7.2	9.6	8.3	10.0	8.0	1	8.7	1
COHM-8 (NC)	8.5	10.9	10.5	10.0	1	4.9	6.9	7.3	8.9	8.2	7.2	3	8.2	3
Mean	8.5	10.4	10.1	9.6		4.9	7.0	7.9	9.1	8.8	7.5		8.3	

Table 3.7 AVTM-2: Second Advanced Varietal Trial in Forage Maize: Plant Height (cm)

Entries	Ludh-	His-	Pant-	Ana-	Jabal-	Rah-	Urulikan-	Rai-	Jha-	**Udai-	Aver-	Ra-
Entries	iana	ar	nagar	nd	pur	uri	chan	pur	nsi	pur	age	nk
PFM-12	208.9	235.5	191.7	213.4	220.0	207.3	207.1	227.1	183.7	149.0	210.5	4
J-1006 (NC)	200.4	231.8	222.6	220.7	243.2	206.2	218.2	248.7	206.4	142.0	222.0	2
African Tall (NC)	263.8	211.3	282.4	241.4	244.8	218.6	235.3	279.1	213.2	129.0	243.3	1
COHM-8 (NC)	210.8	229.3	186.2	220.0	226.6	201.3	217.9	231.5	193.8	145.0	213.0	3
Mean	221.0	226.9	220.7	223.9	233.7	208.4	219.6	246.6	199.3	141.3	222.2	

Note: ** Data is not included in zonal and all India average due to low yield of data

Table 3.8 AVTM-2: Second Advanced Varietal Trial in Forage Maize: Leaf Stem Ratio

Entries	Ludhiana	Hisar	Pantnagar	Anand	Jabalpur	Rahuri	Urulikanchan	Raipur	Jhansi	Average	Rank
PFM-12	0.24	0.42	0.48	0.80	0.58	0.40	0.90	0.34	0.35	0.50	4
J-1006 (NC)	0.27	0.45	0.49	0.81	0.73	0.41	0.82	0.36	0.37	0.52	3
African Tall (NC)	0.23	0.56	0.47	0.77	1.02	0.48	0.76	0.32	0.30	0.55	2
COHM-8 (NC)	0.86	0.37	0.50	0.72	0.92	0.38	0.86	0.32	0.38	0.59	1
Mean	0.40	0.45	0.49	0.78	0.81	0.42	0.84	0.34	0.35	0.54	

Table 3.9AVTM-2: Second Advanced Varietal Trial in Forage Maize: ADF (%), NDF (%) & IVDMD (%)

		F	ADF (%))			N	DF (%)				IVD	MD (%	<u>)</u>	
Entries	Rah-	Ludh-	Pant-	Aver-	Ra-	Rah-	Ludh-	Pant-	Aver-	Ra-	Ludh-	Rah-	His-	Aver-	Ra-
	uri	iana	nagar	age	nk	uri	iana	nagar	age	nk	iana	uri	ar	age	nk
PFM-12	47.2	32.7	57.4	45.8	3	73.1	68.7	66.4	69.4	4	58.9	52.3	47.7	53.0	3
J-1006 (NC)	46.2	34.7	57.0	46.0	4	70.5	65.4	67.4	67.8	3	59.0	53.1	50.6	54.2	2
African Tall (NC)	44.0	36.5	56.4	45.6	2	64.7	63.8	68.0	65.5	1	60.0	54.8	51.5	55.4	1
COHM-8 (NC)	44.1	33.9	56.6	44.9	1	69.4	67.7	65.0	67.4	2	57.4	54.7	46.7	53.0	3
Mean	45.4	34.5	56.9	45.6		69.4	66.4	66.7	67.5		58.8	53.7	49.1	53.9	

Table 4.1 AVTM-2 (Seed): Second Advanced Varietal Trial in Forage Maize (Seed): Seed Yield (q/ha)

		North Wo	est Zone				Centra	l Zone			All In	dia
Entries	Ludh-	Pant-	Aver-	Ra-	Rai-	Jabal-	Ana-	Urulikan-	Aver-	Ra-	Aver-	Ra-
	iana	nagar	age	nk	pur	pur	nd	chan	age	nk	age	nk
PFM-12	15.9	20.7	18.3	4	27.4	49.1	22.8	20.6	30.0	3	26.1	3
J-1006 (NC)	18.6	21.7	20.1	2	22.4	67.7	24.7	20.6	33.8	2	29.3	2
African Tall (NC)	25.3	24.8	25.1	1	17.7	40.5	9.2	14.7	20.5	4	22.0	4
COHM-8 (NC)	20.5	18.2	19.4	3	29.6	59.1	30.8	21.1	35.1	1	29.9	1
Mean	20.1	21.3	20.7		24.3	54.1	21.9	19.2	29.9		26.8	
CD at 5%	2.6	2.4			3.6	0.3	4.9	3.0				
CV (%)	9.2	11.5			10.7	13.6	16.2	11.4				

5. IVTPM: INITIAL VARIETAL TRIAL IN FORAGE PEARL MILLET

(Reference Tables: 5.1 to 5.9)

An Initial Varietal Trial in Forage Pearl Millet comprising of eight entries along with two national checks *i.e.* Giant Bajra and RBB-1 and respective zonal checks was conducted at 19 centres located in four zones of the country. It included 5 locations in North-west, 4 in north- east, 4 in south zone, and 6 in central zone.

For green forage yield (q/ha), Entry JPM 18-71 showed superiority over the best check by a margin of 5.7% in NWZ, 19.9% in NEZ, 8.6% in SZ, 18.9 % at all India level. Entry AFB-54 showed superiority over the best check by a margin of 6.8% in NWZ, 5.1 % at all India level. Entry ADV175020 showed superiority over the best check by a margin of 23.9% in NWZ, 18.0% in NEZ, 33.6% in SZ, 26.6 % at all India level. Entry FSB2021-1 showed superiority over the best check by a margin of 11.9% in NWZ, 21.4% in NEZ, 32.3% in SZ, 20.5 % at all India level. Entry FBL-7 showed superiority over the best check by a margin of 7.9% in NEZ, 3.5% in SZ, 9.2 % at all India level. Entry FBL-6 showed superiority over the best check by a margin of 9.2% in NEZ, 6.3 % at all India level. In other cases entries were either marginally superior or inferior over the best check.

For dry matter yield (q/ha), Entry JPM 18-71 showed superiority over the best check by a margin of 20.6% in NEZ, 8.4 % at all India level. Entry AFB-54 showed superiority over the best check by a margin of 10.5% in NWZ, 10.8 % at all India level. Entry ADV175020 showed superiority over the best check by a margin of 41.4% in NWZ, 20.0% in NEZ, 8.8% in CZ, 4.6% in SZ, 27.1 % at all India level. Entry FSB2021-1 showed superiority over the best check by a margin of 21.5% in NWZ, 18.4% in NEZ, 10.7% in SZ, 14.7 % at all India level. Entry FBL-7 showed superiority over the best check by a margin of 4.7% in NEZ, 5.3% in SZ, 5.9 % at all India level. Entry FBL-6 showed superiority over the best check by a margin of 11.1% in NEZ, 5.3% in SZ, 6.6 % at all India level. In other cases entries were either marginally superior or inferior over the best check.

For green and dry forage production potential (q/ha/day), entry AFB-54 (7.58 and 1.54 q/ha/day respectively) was best performer.

In growth parameters, FSB-2021-2 was best for plant height (230.1 cm) followed by NDFB-942 (225.7 cm). Entry FBL-7 ranked first (value 0.54) for leafiness.

In quality parameters, for crude protein yield (q/ha), AFB-54 in NWZ, JPM-18-71 in NEZ, ADV175020 in CZ, south zone were best performers. At all India level, entry ADV175020 was best (8.7q/ha) followed by JPM-18-71 (7.8q/ha) and AFB-45 (7.4q/ha). For crude protein content (%), AFB-45 and ADV175020 in NWZ, FBL-7 in NEZ, ADV175020 in CZ, entry JPM-18-71 in south zone were best performers. At all India level, entry JPM-18-71 and ADV175020 (8.9q/ha) was best followed by Hybrid-FSB2021-1 (8.6%). For other quality parameters, entry AFB-45 for ADF (42.6 %), check Giant Bajra for NDF (68.4%) was superior. Entry FBL-7 ranked first for IVDMD (50.4%).

Table 5.1 IVTPM: Initial Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha)

Entries				North	West Zone			
Entries	Ludhiana	Hisar	Bikaner	Jalore	Avikanagar	Average	Rank	Superiority%
JPM-18-71	816.7	448.8	537.3	282.9	345.0	486.1	4	5.7
FBL-7	600.0	430.8	500.1	403.7	305.0	447.9	8	
FBL -6	643.1	452.1	463.4	335.7	275.4	433.9	9	
AFB-45	688.9	478.9	662.6	229.2	208.7	453.7	6	
NDFB-942	726.4	420.9	584.0	328.2	203.0	452.5	7	
AFB-54	697.2	431.6	720.9	338.0	268.5	491.2	3	6.8
ADV175020	684.7	394.4	581.9	458.8	730.2	570.0	1	23.9
Hybrid - FSB2021 – 1	877.8	394.4	470.0	350.5	482.0	514.9	2	11.9
RBB-1 (NC)	504.2	376.7	482.6	334.3	184.6	376.5	11	
Giant Bajra (NC)	580.6	373.9	504.9	300.9	317.6	415.6	10	
AFB-3(ZC-NWZ)	619.4	477.1	634.1	298.6	270.7	460.0	5	
Mean	676.3	425.4	558.3	332.8	326.4	463.9		
CD at 5%	67.3	83.9	107.5	87.5	5.0			
CV%	11.1	11.6	11.2		12.5			

Table 5.1 IVTPM: Initial Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha)

				North Ea	st Zone		
Entries	Ayod-	Pu-	Bhuban-	Ran-	Aver-	Ra-	Superi-
	hya	sa	eswar	chi	age	nk	ority%
JPM-18-71	351.2	366.7	349.9	410.4	369.5	2	19.9
FBL-7	183.8	370.0	345.8	430.5	332.5	5	7.9
FBL -6	216.4	400.0	392.7	336.8	336.5	4	9.2
AFB-45	163.3	310.0	276.0	366.0	278.8	11	
NDFB-942	191.9	356.7	319.7	417.4	321.4	6	4.3
AFB-54	228.7	343.3	260.4	402.1	308.6	7	0.1
ADV175020	338.9	386.7	364.5	363.9	363.5	3	18.0
Hybrid - FSB2021 - 1	289.9	410.7	353.1	443.0	374.2	1	21.4
RBB-1 (NC)	216.3	300.0	272.9	372.2	290.4	9	
Giant Bajra (NC)	134.8	333.3	369.7	300.0	284.5	10	
APFB-9-1 (ZC-NEZ)	220.5	356.7	310.4	345.1	308.2	8	
Mean	230.5	357.6	328.6	380.7	324.4		
CD at 5%	24.4	14.4	36.6	46.3			
CV%	9.3	8.8	6.5	7.2			

Table 5.1 IVTPM: Initial Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha)

Enduina				Ce	ntral Zone			
Entries	Anand	Raipur	Jabalpur	Rahuri	Urulikanchan	Jhansi	Average	Rank
JPM-18-71	800.5	534.7	694.0	380.4	540.0	385.6	555.9	2
FBL-7	813.9	493.1	596.8	358.1	443.6	333.8	506.5	4
FBL -6	707.9	544.0	541.3	358.1	439.6	325.0	486.0	6
AFB-45	729.6	280.1	520.5	358.1	392.2	457.9	456.4	10
NDFB-942	744.4	460.7	548.3	358.1	301.5	355.1	461.3	8
AFB-54	713.0	311.6	437.2	496.8	403.6	381.5	457.3	9
ADV175020	808.3	525.5	562.1	348.9	499.2	446.8	531.8	3
Hybrid - FSB2021 - 1	708.8	409.7	478.9	327.3	633.2	446.3	500.7	5
RBB-1 (NC)	435.2	219.9	416.4	372.3	380.7	488.9	385.6	11
Giant Bajra (NC)	680.1	358.8	492.7	399.1	382.4	460.6	462.3	7
BAIF Bajra 1 (ZC-CZ)	830.6	409.7	610.7	415.3	735.3	507.9	584.9	1
Mean	724.8	413.4	536.3	379.3	468.3	417.2	489.9	
CD at 5%	180.9	36.6	2.3	57.5	35.7	46.5		
CV%	14.7	5.2	15.8	8.9	13.2	8.6		

Table 5.1 IVTPM: Initial Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha)

Entries	South Zone							All India		
Entries	Coimbatore	Hyderabad	Mandya	Raichur	Average	Rank	Superiority%	Average	Rank	Superiority%
JPM-18-71	419.0	240.9	259.0	402.8	330.4	3	8.6	450.8	3	18.9
FBL-7	425.9	301.2	275.3	256.9	314.8	4	3.5	414.1	4	9.2
FBL -6	398.1	329.0	339.1	159.7	306.5	5	0.7	403.0	5	6.3
AFB-45	319.4	333.6	318.2	119.0	272.6	10		379.6	8	0.1
NDFB-942	340.3	236.3	302.0	110.0	247.2	11		384.5	7	1.4
AFB-54	407.4	278.0	303.5	154.6	285.9	8		398.8	6	5.1
ADV175020	516.2	278.0	328.4	503.2	406.5	1	33.6	480.0	1	26.6
Hybrid - FSB2021 - 1	463.0	338.2	326.5	483.3	402.7	2	32.3	457.2	2	20.5
RBB-1 (NC)	250.0	324.3	249.7	294.9	279.7	9		340.8	10	
Giant Bajra (NC)	344.9	356.8	304.9	210.7	304.3	6		379.3	9	
Moti Bajra (ZC-SZ)	385.2	319.7	278.5	232.4	304.0	7				
Mean	388.1	303.3	298.6	266.1	314.0			408.8		
CD at 5%	40.0	55.4	21.8	29.7						
CV%	6.1	10.7	8.1	45.5						

AICRP on Forage Crops & Utilization

Table 5.2 IVTPM: Initial Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha)

Entrica	North West Zone								
Entries	Ludhiana	Hisar	Bikaner	Jalore	Avikanagar	Average	Rank	Superiority%	
JPM-18-71	111.9	41.3	90.4	49.1	66.2	71.8	6		
FBL-7	87.0	36.3	117.8	69.9	56.3	73.5	4		
FBL -6	102.1	47.8	103.5	57.8	48.7	72.0	5		
AFB-45	101.3	39.4	117.8	39.0	35.4	66.6	9		
NDFB-942	110.1	50.6	115.1	56.5	35.0	73.5	4		
AFB-54	114.3	56.6	129.7	57.9	47.4	81.2	3	10.5	
ADV175020	108.7	37.6	127.3	78.9	166.9	103.9	1	41.4	
Hybrid - FSB2021 – 1	135.0	33.4	111.3	60.1	106.6	89.3	2	21.5	
RBB-1 (NC)	81.3	44.1	114.8	57.3	39.6	67.4	8		
Giant Bajra (NC)	96.8	35.8	107.1	56.7	57.8	70.8	7		
AFB-3 (ZC-NWZ)	79.4	57.4	131.6	51.8	47.3	73.5	4		
Mean	102.5	43.7	115.1	57.7	64.3	76.7			
CD at 5%	27.5	13.3	21.0	15.7	1.0				
CV%	8.7	17.9	10.6		12.8				

Table 5.2 IVTPM: Initial Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha)

Entries	North East Zone									
	Ayodhya	Pusa	Bhubaneswar	Ranchi	Average	Rank	Superiority%			
JPM-18-71	78.9	90.2	88.0	43.3	75.1	1	20.6			
FBL-7	40.4	92.3	86.5	41.7	65.2	5	4.7			
FBL -6	46.3	98.5	98.3	33.7	69.2	4	11.1			
AFB-45	37.5	73.3	69.7	43.3	56.0	11				
NDFB-942	46.1	86.5	80.9	43.7	64.3	6	3.3			
AFB-54	41.4	81.2	68.2	46.3	59.3	8				
ADV175020	80.4	92.5	91.7	34.4	74.7	2	20.0			
Hybrid - FSB2021 - 1	66.7	99.7	87.7	40.8	73.7	3	18.4			
RBB-1 (NC)	45.3	70.6	69.9	43.2	57.2	10				
Giant Bajra (NC)	30.2	78.4	94.4	30.0	58.2	9				
APFB-9-1 (ZC-NEZ)	51.7	86.5	75.3	35.6	62.3	7				
Mean	51.4	86.3	82.8	39.6	65.0					
CD at 5%		7.2	10.1	37.4						
CV%	10.1	8.3	7.2	5.1						

Table 5.2 IVTPM: Initial Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha)

Entrice					Central Zone				
Entries	Anand	Raipur	Jabalpur	Rahuri	Urulikanchan	Jhansi	Average	Rank	Superiority%
JPM-18-71	136.3	113.8	156.4	67.9	106.8	79.6	110.1	4	
FBL-7	124.1	133.7	135.5	62.0	89.6	98.2	107.2	6	
FBL -6	135.2	117.1	119.6	67.8	88.1	109.7	106.3	7	
AFB-45	193.3	59.2	114.3	68.1	85.3	136.1	109.4	5	
NDFB-942	124.5	107.6	121.2	67.2	59.7	101.9	97.0	10	
AFB-54	178.2	97.5	95.6	100.8	76.4	147.7	116.0	2	2.0
ADV175020	132.0	154.7	141.3	57.4	110.2	146.8	123.7	1	8.8
Hybrid - FSB2021 - 1	104.3	101.3	107.9	61.0	127.5	131.9	105.6	8	
RBB-1 (NC)	114.5	44.8	97.3	84.6	77.0	118.1	89.4	11	
Giant Bajra (NC)	124.5	96.3	108.0	69.9	75.8	138.0	102.1	9	
BAIF Bajra 1 (ZC-CZ)	109.1	122.4	139.1	59.8	138.2	113.9	113.8	3	
Mean	134.2	104.4	121.5	69.7	94.1	120.2	107.3		
CD at 5%	37.6	10.4	0.5	10.6	7.0	34.0			
CV%	16.4	5.9	13.9	8.9	13.0	16.6			

Table 5.2 IVTPM: Initial Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha)

Entries			South Z	one				All Indi	ia
Entries	Coimbatore	Hyderabad	Mandya	Average	Rank	Superiority%	Average	Rank	Superiority%
JPM-18-71	79.2	48.8	64.8	64.3	9		84.1	4	8.4
FBL-7	85.0	63.6	57.8	68.8	6	1.6	82.1	6	5.9
FBL -6	74.8	70.1	68.9	71.3	2	5.3	82.7	5	6.6
AFB-45	65.9	66.8	75.5	69.4	4	2.5	79.0	7	1.8
NDFB-942	65.0	48.9	63.6	59.2	10		76.9	9	
AFB-54	82.1	56.2	69.3	69.2	5	2.2	85.9	3	10.8
ADV175020	99.7	57.8	55.0	70.8	3	4.6	98.5	1	27.1
Hybrid - FSB2021 - 1	94.2	68.1	62.7	75.0	1	10.7	88.9	2	14.7
RBB-1 (NC)	47.8	66.9	59.3	58.0	11		70.9	10	
Giant Bajra (NC)	66.2	70.9	58.7	65.3	8		77.5	8	
Moti Bajra (ZC-SZ)	75.3	68.0	59.8	67.7	7				
Mean	75.9	62.4	63.2	67.2			82.6		
CD at 5%	8.1	12.3	7.0						
CV%	6.3	11.5	12.3						

Table 5.3 IVTPM: Initial Varietal Trial in Forage Pearl millet (New): Green Forage Yield (q/ha/day)

Entries	Ludh-	His-	Bika-	Avika-	Ayod-	Pu-	Bhuban-	Ran-	Ana-	Rai-	Rah-	Urulikan-	Jha-	Coimb-	Hydera-	Man-	Aver-	Ra-
Entries	iana	ar	ner	nagar	hya	sa	eswar	chi	nd	pur	uri	chan	nsi	atore	bad	dya	age	nk
JPM-18-71	10.90	7.48	8.02	5.10	6.50	5.73	5.53	5.67	14.04	7.53	6.75	8.06	5.70	8.06	4.66	5.88	7.23	4
FBL-7	8.00	6.99	6.25	4.62	2.96	5.78	5.16	6.04	14.03	6.94	6.21	6.62	5.69	7.89	5.81	5.86	6.55	7
FBL -6	8.60	7.51	6.02	4.17	3.79	6.29	6.01	4.98	12.00	7.66	6.14	6.56	5.08	7.11	5.38	8.09	6.59	6
AFB-45	9.20	9.90	9.89	4.01	3.14	5.34	4.60	6.57	15.86	5.49	7.26	6.43	7.43	6.66	6.59	6.36	7.17	5
NDFB-942	9.70	8.18	8.00	3.15	3.36	5.66	4.87	7.11	12.62	6.49	6.43	4.50	6.02	6.42	4.14	6.16	6.43	8
AFB-54	9.30	9.01	10.76	5.02	4.57	6.48	4.44	7.63	15.17	6.11	9.68	6.62	6.43	7.69	5.39	6.91	7.58	1
ADV175020	9.10	6.88	7.28	10.04	4.77	5.95	5.41	4.87	13.94	6.41	6.16	7.45	7.57	8.19	5.49	6.71	7.26	2
Hybrid - FSB2021 – 1	11.70	7.45	5.95	6.74	5.36	6.52	5.35	5.73	12.22	5.00	5.78	9.45	6.63	7.72	6.94	7.42	7.25	3
RBB-1 (NC)	6.70	8.37	7.20	3.45	4.21	5.26	4.50	7.20	9.89	4.40	7.35	6.24	8.15	5.21	6.52	6.08	6.30	9
Giant Bajra (NC)	7.70	6.15	6.92	4.67	2.17	5.29	5.96	4.97	10.97	5.05	7.09	5.71	6.77	6.39	7.16	6.64	6.23	10
AFB-3 (ZC-NWZ)	8.30	10.45	9.46	5.21														
APFB-9-1 (ZC-NEZ)					3.67	5.70	4.78	5.92										
BAIF Bajra 1 (ZC-CZ)									14.08	5.00	7.60	10.97	8.02					
Moti Bajra (ZC-SZ)														7.41	6.46	6.05		
Mean	9.02	8.03	7.80	5.11	4.05	5.82	5.15	6.06	13.17	6.01	6.95	7.15	6.68	7.16	5.87	6.56	6.86	

Table 5.4 IVTPM: Initial Varietal Trial in Forage Pearl millet (New): Dry Matter Yield (q/ha/day)

Entries	Ludh-	His-	Bika-	Avika-	Ayod-	Pu-	Bhuban-	Ran-	Ana-	Rai-	Rah-	Urulikan-	Coimb-	Hydera-	Man-	Aver-	Ra-
Entries	iana	ar	ner	nagar	hya	sa	eswar	chi	nd	pur	uri	chan	atore	bad	dya	age	nk
JPM-18-71	1.50	0.69	1.35	0.98	1.46	1.41	1.39	0.60	2.39	1.60	1.21	1.59	1.52	0.94	1.47	1.34	4
FBL-7	1.20	0.59	1.47	0.85	0.65	1.44	1.29	0.58	2.14	1.88	1.08	1.34	1.57	1.22	1.23	1.24	7
FBL -6	1.40	0.79	1.34	0.74	0.81	1.55	1.51	0.50	2.29	1.65	1.16	1.31	1.34	1.15	1.64	1.28	5
AFB-45	1.40	0.82	1.76	0.68	0.72	1.26	1.16	0.78	4.20	1.16	1.38	1.40	1.37	1.32	1.51	1.40	2
NDFB-942	1.50	0.99	1.58	0.54	0.80	1.37	1.23	0.75	2.11	1.52	1.21	0.89	1.23	0.86	1.30	1.19	8
AFB-54	1.50	1.19	1.94	0.89	0.82	1.53	1.16	0.88	3.79	1.91	1.96	1.25	1.55	1.09	1.58	1.54	1
ADV175020	1.40	0.66	1.59	2.30	1.13	1.42	1.36	0.46	2.28	1.89	1.01	1.65	1.58	1.14	1.13	1.40	2
Hybrid - FSB2021 – 1	1.80	0.63	1.41	1.49	1.23	1.58	1.33	0.53	1.80	1.24	1.08	1.90	1.57	1.39	1.42	1.36	3
RBB-1 (NC)	1.10	0.98	1.71	0.74	0.88	1.24	1.15	0.84	2.60	0.90	1.67	1.26	1.00	1.35	1.45	1.26	6
Giant Bajra (NC)	1.30	0.59	1.47	0.85	0.48	1.24	1.52	0.50	2.01	1.36	1.24	1.13	1.23	1.42	1.28	1.17	9
AFB-3 (ZC-NWZ)	1.10	1.26	1.97	0.91													
APFB-9-1 (ZC-NEZ)					0.86	1.38	1.16	0.61									
BAIF Bajra 1 (ZC-CZ)									1.85	1.49	1.09	2.06					
Moti Bajra (ZC-SZ)													1.45	1.38	1.30		
Mean	1.38	0.84	1.60	1.00	0.89	1.40	1.30	0.64	2.50	1.51	1.28	1.43	1.40	1.21	1.39	1.32	

Table 5.5 IVTPM: Initial Varietal Trial in Forage Pearl millet (New): Crude Protein Yield (q/ha)

Entries		No	rth West Zor	ne			North	East Zone		
Elitries	Ludhiana	Hisar	Bikaner	Average	Rank	Ayodhya	Bhubaneswar	Ranchi	Average	Rank
JPM-18-71	6.6	4.0	6.8	5.8	9	6.0	6.4	3.6	5.3	1
FBL-7	5.1	3.9	7.9	5.7	10	3.0	6.4	4.1	4.5	4
FBL -6	5.8	5.1	9.0	6.6	7	3.3	7.2	2.6	4.4	5
AFB-45	7.4	4.3	12.6	8.1	3	2.9	5.1	3.5	3.8	9
NDFB-942	6.6	4.9	9.7	7.1	6	3.9	5.9	3.5	4.4	5
AFB-54	7.5	5.3	15.9	9.6	1	3.4	4.8	4.1	4.1	7
ADV175020	8.3	4.1	13.2	8.5	2	6.0	6.7	2.3	5.0	3
Hybrid - FSB2021 - 1	8.1	3.8	10.7	7.5	5	5.1	7.1	3.4	5.2	2
RBB-1 (NC)	6.3	4.2	9.0	6.5	8	3.5	5.0	3.1	3.9	8
Giant Bajra (NC)	6.9	3.9	9.1	6.6	7	2.4	6.8	1.8	3.7	10
AFB-3 (ZC-NWZ)	4.9	6.0	12.8	7.9	4					
APFB-9-1 (ZC-NEZ)						4.1	6.0	2.8	4.3	6
Mean	6.7	4.5	10.6	7.3		4.0	6.1	3.2	4.4	

Table 5.5 IVTPM: Initial Varietal Trial in Forage Pearl millet (New): Crude Protein Yield (q/ha)

			(Central Z	one	ĺ			S	outh Zone			All In	dia
Entries	Ana-	Rai-	Jabal-	Rah-	Urulikan-	Aver-	Ra-	Coimb-	Man-	Hydera-	Aver-	Ra-	Aver-	Ra-
	nd	pur	pur	uri	chan	age	nk	atore	dya	bad	age	nk	age	nk
JPM-18-71	12.1	11.3	11.2	8.7	9.4	10.6	2	10.1	7.4	5.3	7.6	3	7.8	2
FBL-7	12.4	7.2	9.7	6.9	6.9	8.6	7	11.1	4.8	5.2	7.0	6	6.8	5
FBL -6	13.4	9.1	8.2	5.8	8.2	8.9	5	9.8	6.3	6.4	7.5	4	7.2	4
AFB-45	20.2	6.8	7.7	5.7	7.4	9.5	4	9.8	5.6	5.2	6.9	7	7.4	3
NDFB-942	11.9	4.3	8.3	5.6	5.3	7.1	11	6.8	5.3	3.8	5.3	9	6.1	7
AFB-54	15.5	6.0	6.2	9.4	7.0	8.8	6	10.4	4.8	3.8	6.3	8	7.4	3
ADV175020	14.3	14.7	10.2	6.9	8.9	11.0	1	16.5	4.6	5.0	8.7	1	8.7	1
Hybrid - FSB2021 – 1	9.1	7.2	7.7	6.6	11.5	8.4	8	11.6	5.7	6.2	7.8	2	7.4	3
RBB-1 (NC)	9.8	2.7	6.2	10.2	7.4	7.3	10	6.3	4.1	5.5	5.3	9	6.0	8
Giant Bajra (NC)	11.3	7.2	7.2	5.6	6.1	7.5	9	9.0	5.9	7.6	7.5	4	6.5	6
BAIF Bajra 1 (ZC-CZ)	11.8	7.9	10.1	7.2	12.6	9.9	3							
Moti Bajra (ZC-SZ)								11.2	5.2	5.6	7.4	5		
Mean	12.9	7.7	8.4	7.2	8.2	8.9		10.2	5.4	5.4	7.0		7.1	

Table 5.6 IVTPM: Initial Varietal Trial in Forage Pearl millet (New): Crude Protein (%)

Entuing		Nort	h West Zon	e			Nort	h East Zone	!	
Entries	Ludhiana	Hisar	Bikaner	Average	Rank	Bhubaneswar	Ayodhya	Ranchi	Average	Rank
JPM-18-71	5.9	9.7	7.5	7.7	8	7.3	7.6	8.3	7.7	5
FBL-7	5.9	10.8	6.7	7.8	7	7.4	7.4	9.8	8.2	1
FBL -6	5.7	10.7	8.7	8.4	5	7.3	7.2	7.8	7.4	6
AFB-45	7.3	10.8	10.7	9.6	1	7.3	7.8	8.1	7.7	5
NDFB-942	6.0	9.7	8.4	8.0	6	7.3	8.5	8.1	8.0	3
AFB-54	6.6	9.4	12.2	9.4	2	7.0	8.3	8.8	8.0	3
ADV175020	7.6	10.8	10.3	9.6	1	7.3	7.5	6.8	7.2	7
Hybrid - FSB2021 - 1	6.0	11.4	9.6	9.0	3	8.2	7.7	8.3	8.1	2
RBB-1 (NC)	7.8	9.5	7.9	8.4	5	7.2	7.8	7.1	7.4	6
Giant Bajra (NC)	7.1	11.0	8.5	8.8	4	7.2	7.9	6.0	7.0	8
AFB-3 (ZC-NWZ)	6.2	10.5	9.7	8.8	4					
APFB-9-1 (ZC-NEZ)						7.9	8.0	7.8	7.9	4
Mean	6.6	10.4	9.1	8.7		7.4	7.8	7.9	7.7	

Table 5.6 IVTPM: Initial Varietal Trial in Forage Pearl millet (New): Crude Protein (%)

			C	Central Z	Zone				S	outh Zone			All In	dia
Entries	Ana-	Rai-	Jabal-	Rah-	Urulikan-	Aver-	Ra-	Man-	Hydera-	**Coimb-	Aver-	Ra-	Aver-	Ra-
	nd	pur	pur	uri	chan	age	nk	dya	bad	atore	age	nk	age	nk
JPM-18-71	9.0	9.9	7.2	12.8	8.8	9.5	2	11.4	10.9	12.7	11.1	1	8.9	1
FBL-7	9.9	6.7	7.2	11.1	7.7	8.5	6	8.3	8.2	13.1	8.3	5	8.2	5
FBL -6	9.9	9.4	6.9	8.6	9.3	8.8	4	9.2	9.0	13.1	9.1	3	8.4	3
AFB-45	10.6	7.1	6.7	8.3	8.6	8.3	7	7.4	7.7	14.9	7.6	7	8.3	4
NDFB-942	9.6	9.5	6.9	8.3	8.8	8.6	5	8.3	7.7	10.5	8.0	6	8.2	5
AFB-54	8.7	6.1	6.5	9.3	9.1	7.9	8	7.0	6.6	12.7	6.8	8	8.1	6
ADV175020	11.0	9.5	7.2	12.1	8.1	9.6	1	8.3	8.6	16.6	8.5	4	8.9	1
Hybrid - FSB2021 - 1	8.8	7.1	7.1	10.8	9.0	8.6	5	9.2	9.0	12.3	9.1	3	8.6	2
RBB-1 (NC)	8.5	6.0	6.4	12.1	9.6	8.5	6	7.0	8.2	13.1	7.6	7	8.1	6
Giant Bajra (NC)	9.3	7.5	6.7	8.1	8.0	7.9	8	10.1	10.6	13.6	10.3	2	8.3	4
BAIF Bajra 1 (ZC-CZ)	10.8	6.5	7.2	12.1	9.1	9.1	3							
Moti Bajra (ZC-SZ)								8.7	8.3	14.9	8.5	4	8.4	
Mean	9.6	7.8	6.9	10.3	8.7	8.7		8.6	8.6	13.4	8.6			

Table 5.7 IVTPM: Initial Varietal Trial in Forage Pearl millet (New): Plant Height (cm)

Entries	Ludhiana	Hisar	Bikaner	Avikanagar	Ayodhya	Pusa	Bhubaneswar	Ranchi
JPM-18-71	265.0	244.7	212.0	194.7	231.2	231.6	202.1	181.9
FBL-7	270.0	248.3	185.2	202.3	123.0	245.0	195.7	184.7
FBL -6	255.0	240.0	227.8	185.3	224.4	231.6	228.7	152.0
AFB-45	265.0	243.7	210.7	164.5	176.2	233.3	175.7	211.3
NDFB-942	285.0	246.7	259.8	178.0	234.9	230.0	190.4	203.1
AFB-54	250.0	238.0	215.2	178.5	213.4	225.0	163.1	220.6
ADV175020	240.0	230.3	201.4	236.0	185.4	240.0	210.2	202.4
Hybrid - FSB2021 – 1	280.0	238.3	207.2	255.7	142.4	226.6	204.5	203.6
RBB-1 (NC)	250.0	253.3	201.1	182.9	166.2	210.0	168.4	191.4
Giant Bajra (NC)	255.0	224.7	205.0	192.7	184.6	205.0	219.4	182.8
AFB-3 (ZC-NWZ)	285.0	229.0	216.6	160.0				
APFB-9-1 (ZC-NEZ)					171.4	226.6	180.2	173.2
Mean	263.6	239.7	212.9	193.7	186.6	227.7	194.4	191.5

Table 5.7 IVTPM: Initial Varietal Trial in Forage Pearl millet (New): Plant Height (cm)

Entries	Ana-	Rai-	Jabal-	Rah-	Urulikan-	Jha-	Coimb-	Hydera-	Man-	Rai-	Aver-	Ra-
Entries	nd	pur	pur	uri	chan	nsi	atore	bad	dya	chur	age	nk
JPM-18-71	233.7	270.8	193.3	176.5	248.6	265.0	265.0	228.7	162.1	176.1	221.3	4
FBL-7	232.6	266.3	238.7	131.3	244.9	250.7	256.0	206.4	147.8	169.6	211.0	7
FBL -6	235.7	278.2	200.0	156.6	203.0	262.3	245.0	178.6	176.7	167.9	213.8	6
AFB-45	221.9	192.7	188.7	160.4	202.7	298.3	225.0	203.3	151.4	166.1	205.0	8
NDFB-942	244.2	276.1	242.3	180.3	209.6	260.3	253.0	230.9	158.2	180.1	225.7	2
AFB-54	227.3	193.7	157.7	151.1	179.7	270.7	257.2	209.6	137.0	170.6	203.2	9
ADV175020	218.6	329.1	261.7	177.1	214.6	270.7	275.3	237.0	147.0	167.2	224.7	7
Hybrid - FSB2021 - 1	201.5	310.2	299.3	188.7	250.9	311.3	264.0	236.2	155.0	166.3	230.1	1
RBB-1 (NC)	227.2	197.2	177.0	159.2	176.6	244.7	250.2	202.6	127.8	166.3	197.3	10
Giant Bajra (NC)	218.3	272.8	254.3	166.5	236.8	313.7	249.0	166.8	171.8	170.3	216.1	5
BAIF Bajra 1 (ZC-CZ)	208.4	313.3	224.7	183.3	227.3	297.7						
Moti Bajra (ZC-SZ)							247.0	199.2	124.0	153.5		
Mean	224.5	263.7	221.6	166.5	217.7	276.8	253.3	209.0	150.8	168.6	214.8	

Table 5.8 IVTPM: Initial Varietal Trial in Forage Pearl millet (New): Leaf Stem Ratio

Entries	Ludhiana	Hisar	Bikaner	Avikanagar	Ayodhya	Pusa	Bhubaneswar	Ranchi
JPM-18-71	0.67	0.54	0.68	0.58	0.50	0.51	0.74	0.71
FBL-7	1.22	0.48	0.46	0.55	0.47	0.54	0.74	0.53
FBL -6	0.63	0.47	0.27	0.53	0.60	0.58	0.85	0.92
AFB-45	0.47	0.43	0.78	0.73	0.61	0.40	0.55	0.64
NDFB-942	0.64	0.45	0.61	0.58	0.58	0.48	0.71	0.82
AFB-54	0.61	0.43	0.61	0.56	0.63	0.47	0.64	0.52
ADV175020	0.52	0.35	0.42	0.55	0.65	0.56	0.89	0.76
Hybrid - FSB2021 – 1	0.64	0.61	0.48	0.48	0.66	0.60	0.77	0.69
RBB-1 (NC)	0.54	0.41	0.40	0.66	0.70	0.45	0.60	0.56
Giant Bajra (NC)	0.59	0.56	0.37	0.54	0.69	0.45	0.80	0.62
AFB-3 (ZC-NWZ)	0.54	0.71	0.52	0.69				
APFB-9-1 (ZC-NEZ)					0.52	0.48	0.66	0.72
Mean	0.64	0.49	0.51	0.59	0.60	0.50	0.72	0.68

Table 5.8 IVTPM: Initial Varietal Trial in Forage Pearl millet (New): Leaf Stem Ratio

Entries	Anand	Raipur	Jabalpur	Rahuri	Urulikanchan	Jhansi	Coimbatore	Hyderabad	Mandya	Average	Rank
JPM-18-71	0.79	0.25	0.84	0.52	0.42	0.22	0.26	0.23	0.22	0.51	3
FBL-7	0.74	0.25	1.02	0.68	0.51	0.33	0.27	0.22	0.23	0.54	1
FBL -6	0.73	0.26	0.77	0.42	0.54	0.29	0.26	0.21	0.21	0.50	4
AFB-45	0.85	0.34	0.64	0.27	0.39	0.36	0.29	0.17	0.23	0.48	6
NDFB-942	0.47	0.27	0.77	0.33	0.44	0.32	0.23	0.22	0.25	0.48	6
AFB-54	0.75	0.33	0.68	0.29	0.46	0.38	0.25	0.21	0.24	0.47	7
ADV175020	0.58	0.20	0.86	0.43	0.48	0.33	0.26	0.17	0.18	0.48	6
Hybrid - FSB2021 - 1	0.73	0.26	0.84	0.47	0.52	0.32	0.25	0.19	0.25	0.52	2
RBB-1 (NC)	0.75	0.32	0.67	0.27	0.47	0.31	0.26	0.21	0.22	0.46	8
Giant Bajra (NC)	0.70	0.27	0.72	0.45	0.51	0.37	0.21	0.31	0.20	0.49	5
BAIF Bajra 1 (ZC-CZ)	0.75	0.23	1.03	0.81	0.47	0.32					
Moti Bajra (ZC-SZ)							0.20	0.18	0.22		
Mean	0.71	0.27	0.80	0.45	0.47	0.32	0.25	0.21	0.22	0.49	

Table 5.9 IVTPM: Initial Varietal Trial in Forage Pearl millet (New): ADF (%), NDF (%) & IVDMD (%)

Entrica	ADF (%)	NDF ((%)		IVDMI	D (%)	
Entries	Ludhiana	Rank	Ludhiana	Rank	Ludhiana	Hisar	Average	Rank
JPM-18-71	48.7	8	73.5	9	47.0	47.1	47.0	7
FBL-7	48.9	9	73.2	8	48.2	52.5	50.4	1
FBL -6	46.2	4	72.3	5	53.2	44.0	48.6	5
AFB-45	42.6	1	69.8	2	50.8	47.0	48.9	4
NDFB-942	48.7	8	71.5	4	45.2	52.6	48.9	4
AFB-54	46.8	5	72.6	7	46.6	47.9	47.2	6
ADV175020	47.2	6	72.5	6	52.9	46.1	49.5	3
Hybrid - FSB2021 – 1	48.7	8	73.5	10	45.6	42.6	44.1	9
RBB-1 (NC)	45.6	3	71.4	3	51.2	39.9	45.5	8
Giant Bajra (NC)	43.2	2	68.4	1	54.1	45.5	49.8	2
AFB-3 (ZC-NWZ)	47.8	7	74.6	11	42.5	39.7	41.1	10
Mean	46.8		72.1		48.8	45.9	47.4	

6. AVTPM-1: FIRST ADVANCED VARIETAL TRIAL IN FORAGE PEARL MILLET

(Reference Tables: 6.1 to 6.9)

In Forage Pearl Millet, five entries along with two national checks *i.e.* Giant Bajra and RBB-1 and respective zonal checks were evaluated in First Advanced Varietal Trial conducted at 19 locations comprising of 4 locations situated in south zone, 5 in NW, 4 in NE, 6 in central zone.

For green forage yield (q/ha), Entry 16ADV0111 showed superiority over the best check by a margin of 5.4% in NWZ, 6.9% in NEZ, 8.1% in CZ, 34.5% in SZ, 18.2 % at all India level. Entry JPM-18-37 showed superiority over the best check by a margin of 13.4% in NWZ, 13.9 % in SZ, 12.0 % at all India level. Entry FBL-4 showed superiority over the best check by a margin of 32.8% in SZ, 7.9 % at all India level. Entry TSFB-1610 showed superiority over the best check by a margin of 16.3% in SZ, 8.0 % at all India level. Entry PHFB-5 showed superiority over the best check by a margin of 5.0 % at all India level. In other cases entries were either marginally superior or inferior over the best check.

For dry matter yield (q/ha), Entry 16ADV0111 showed superiority over the best check by a margin of 10.6 % in NWZ, 13.6 % in NEZ, 11.8 % in CZ, 29.0 % in SZ, 19.2 % at all India level. Entry JPM-18-37 showed superiority over the best check by a margin of 9.4% in NWZ, 7.9 % in NEZ, 6.7% in CZ, 11.6% in SZ, 13.0 % at all India level. Entry FBL-4 showed superiority over the best check by a margin of 30.0 % in SZ. Entry TSFB-1610 showed superiority over the best check by a margin of 6.0% in NWZ, 4.9% in CZ, 16.5% in SZ, 12.1 % at all India level. Entry PHFB-5 showed superiority over the best check by a margin of 5.7 % at all India level. In other cases entries were either marginally superior or inferior over the best check.

For green and fodder production potential (q/ha/day), entry JPM-18-37 (7.39 and 1.41 q/ha/day respectively) ranked first

For plant height, PHBF-5 (220.9 cm) ranked first followed by JPM-18-37 (213.4 cm). For leaf stem ratio, check RBB-1 ranked first.

For CPY (q/ha), check Giant Bajra in NWZ, entry TSFB-1610 in CZ, entry 16ADV0111 in NEZ, SZ and at all India level were best performers. For crude protein content, Zonal check AFB-9-1 top ranked in NWZ, BAIF Bajra in CZ, Moti Bajra in SZ, whereas national check Giant Bajra top ranked in NEZ and at all India level. For other quality parameters, entry FBL-4 ranked first for ADF and IVDMD whereas RBB-1 ranked first for NDF.

Table 6.1 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha)

Entries				North V	West Zone			
Entries	Ludhiana	Hisar	Bikaner	Avikanagar	Jalore	Average	Rank	Superiority (%)
FBL 4	688.9	483.1	484.1	229.6	451.4	467.4	6	
TSFB-1610	725.0	470.9	408.8	295.0	494.4	478.8	3	1.9
16ADV0111	712.5	501.9	462.4	210.3	590.3	495.5	2	5.4
JPM 18-37	705.6	523.2	618.7	359.2	458.3	533.0	1	13.4
PHBF-5	737.8	471.7	513.9	398.3	266.7	477.7	4	1.6
RBB-1 (NC)	618.1	411.1	470.2	347.8	250.7	419.6	8	
Giant Bajra (NC)	744.2	447.7	506.6	380.9	270.8	470.0	5	
AFB-3 (ZC-NWZ)	677.8	457.9	448.4	261.1	418.1	452.6	7	
Mean	701.2	470.9	489.1	310.3	400.1	474.3		
CD at 5(%)	42.6	87.3	77.4	8.1	137.8			
CV (%)	9.2	10.9	8.9	12.5				

Table 6.1 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha)

Entwice			N	North East Zone			
Entries	Pusa	Bhubaneswar	Ranchi	Ayodhya	Average	Rank	Superiority (%)
FBL 4	375.7	346.5	383.7	304.2	352.5	6	
TSFB-1610	390.3	390.2	485.8	294.0	390.1	3	2.2
16ADV0111	380.2	310.5	466.0	475.7	408.1	1	6.9
JPM 18-37	410.0	337.6	403.8	410.4	390.5	2	2.3
PHBF-5	370.4	365.7	340.6	269.5	336.6	7	
RBB-1 (NC)	345.0	317.8	374.3	224.6	315.4	8	
Giant Bajra (NC)	360.3	378.3	517.0	271.5	381.8	4	
APFB-9-1 (ZC-NEZ)	350.0	309.0	405.6	385.9	362.6	5	
Mean	372.7	344.4	422.1	329.5	367.2		
CD at 5(%)	11.7	31.5	42.7	56.8			
CV (%)	6.9	5.2	5.8	13.1			

Table 6.1 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha)

Entries					Central Zone				
Entries	Anand	Jabalpur	Raipur	Rahuri	Urulikanchan	Jhansi	Average	Rank	Superiority (%)
FBL 4	923.6	395.6	370.8	323.5	391.0	293.3	449.6	4	
TSFB-1610	712.2	520.5	398.6	363.6	380.2	275.7	441.8	6	
16ADV0111	938.1	395.6	654.2	377.9	388.3	297.7	508.6	1	8.1
JPM 18-37	783.9	447.6	440.3	329.8	369.8	307.6	446.5	5	
PHBF-5	864.2	447.6	422.2	328.1	446.1	289.1	466.2	3	
RBB-1 (NC)	548.1	295.0	284.7	371.1	231.0	302.4	338.7	8	
Giant Bajra (NC)	516.1	461.5	447.2	359.4	295.2	286.7	394.3	7	
BAIF Bajra 1 (ZC-CZ)	792.8	298.4	620.8	365.8	443.2	301.8	470.5	2	
Mean	759.9	407.7	454.9	352.4	368.1	294.3	439.5		
CD at 5(%)	218.6	2.3	56.6	37.7	85.9	19.2			
CV (%)	16.4	10.1	7.1	6.1	13.2	5.2			

Table 6.1 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha)

			S	South Zone					All India	a
Entries	Coimb-	Hydera-	Man-	**Rai-	Aver-	Ra-	Superi-	Aver-	Ra-	Superi-
	atore	bad	dya	chur	age	nk	ority%	age	nk	ority%
FBL 4	499.7	402.6	299.3	165.2	400.5	2	32.8	424.8	4	7.9
TSFB-1610	408.3	394.3	249.6	125.9	350.7	3	16.3	425.4	3	8.0
16ADV0111	495.8	336.0	385.1	203.9	405.6	1	34.5	465.5	1	18.2
JPM 18-37	411.4	313.8	304.9	160.5	343.4	4	13.9	440.9	2	12.0
PHBF-5	405.3	263.8	242.3	130.6	303.8	5	0.8	413.5	5	5.0
RBB-1 (NC)	227.5	244.3	220.2	123.7	230.7	8		338.0	7	
Giant Bajra (NC)	391.7	227.7	224.6	121.5	281.3	7		393.7	6	
Moti Bajra (ZC-SZ)	440.8	224.9	238.8	138.3	301.5	6				
Mean	410.1	300.9	270.6	146.2	327.2			414.5		
CD at 5(%)	38.2	50.0	19.1	4.4						
CV (%)	5.3	9.4	10.7	17.3						

Table 6.2 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha)

T-Aming				North W	est Zone			
Entries	Ludhiana	Bikaner	Avikanagar	Jalore	**Hisar	Average	Rank	Superiority (%)
FBL 4	97.0	118.8	50.0	78.0	47.0	86.0	5	2.1
TSFB-1610	111.5	95.0	63.8	86.7	36.5	89.3	3	6.0
16ADV0111	99.0	120.1	50.3	103.1	41.8	93.1	1	10.6
JPM 18-37	99.4	121.2	68.5	79.4	50.1	92.1	2	9.4
PHBF-5	117.5	106.0	78.2	46.8	34.7	87.1	4	3.5
RBB-1 (NC)	92.2	121.9	66.3	43.8	54.6	81.1	7	
Giant Bajra (NC)	103.2	111.4	75.2	47.0	44.9	84.2	6	
AFB-3 (ZC-NWZ)	99.7	78.4	48.9	73.1	43.3	75.0	8	
Mean	102.4	109.1	62.6	69.7	44.1	86.0		
CD at 5(%)	19.5	17.0	1.6	21.3	9.2			
CV (%)	7.9	8.8	12.5		12.3			

Table 6.2 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha)

Entries			I I	North East Zone	-		
Entries	Pusa	Bhubaneswar	Ranchi	Ayodhya	Average	Rank	Superiority (%)
FBL 4	91.6	86.6	76.7	68.4	80.8	5	-
TSFB-1610	92.2	97.2	104.1	64.7	89.6	2	
16ADV0111	90.6	76.4	101.4	108.9	94.3	1	13.6
JPM 18-37	94.8	83.8	93.7	86.2	89.6	2	7.9
PHBF-5	76.4	91.0	68.1	66.0	75.4	7	
RBB-1 (NC)	85.4	77.5	91.6	53.5	77.0	6	
Giant Bajra (NC)	78.3	89.8	105.9	58.3	83.1	3	
APFB-9-1 (ZC-NEZ)	83.3	75.9	81.1	90.7	82.7	4	
Mean	86.6	84.8	90.3	74.6	84.1		
CD at 5(%)	4.8	7.8	37.8	2.2			
CV (%)	6.9	5.3	4.4	7.9			

Table 6.2 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha)

Entries					Central Zone				
Entries	Anand	Jabalpur	Raipur	Rahuri	Urulikanchan	Jhansi	Average	Rank	Superiority (%)
FBL 4	122.1	84.9	80.5	56.8	45.4	58.6	74.7	7	
TSFB-1610	100.7	114.7	84.7	62.6	75.6	75.8	85.7	4	4.9
16ADV0111	124.4	84.8	146.2	56.2	58.2	78.1	91.3	1	11.8
JPM 18-37	114.3	96.7	130.7	55.8	53.1	72.5	87.2	3	6.7
PHBF-5	132.4	96.7	92.8	55.4	69.1	88.9	89.2	2	9.2
RBB-1 (NC)	99.4	62.6	60.3	85.3	35.1	74.4	69.5	8	
Giant Bajra (NC)	75.1	101.7	89.4	65.1	37.6	87.2	76.0	6	
BAIF Bajra 1 (ZC-CZ)	97.2	63.8	128.3	52.6	77.6	70.6	81.7	5	
Mean	108.2	88.2	101.6	61.2	56.5	75.8	81.9		
CD at 5(%)	NS	0.5	16.7	6.8	12.9	17.5			
CV (%)	19.2	9.9	9.4	6.4	12.9	13.2			

Table 6.2 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha)

Entries			All India						
Entries	Coimbatore	Hyderabad	Mandya	Average	Rank	Superiority%	Average	Rank	Superiority%
FBL 4	98.9	87.8	58.8	81.9	1	30.0	80.1	5	5.3
TSFB-1610	81.2	86.8	51.9	73.3	3	16.5	85.3	3	12.1
16ADV0111	96.2	73.2	74.2	81.2	2	29.0	90.7	1	19.2
JPM 18-37	84.6	72.5	53.7	70.3	4	11.6	85.9	2	13.0
PHBF-5	80.4	53.8	46.9	60.4	6		80.4	4	5.7
RBB-1 (NC)	47.0	53.8	47.9	49.6	8		70.5	7	
Giant Bajra (NC)	75.0	48.2	44.4	55.9	7		76.1	6	
Moti Bajra (ZC-SZ)	89.7	49.4	49.7	62.9	5				
Mean	81.6	65.7	53.4	66.9			81.3		
CD at 5(%)	7.0	9.8	4.5						
CV (%)	4.9	8.5	12.8						

Table 6.3 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha/day)

Entries	Ludh-	His-	Bika-	Avika-	Pu-	Bhuban-	Ayod-	Ran-
Entries	iana	ar	ner	nagar	sa	eswar	hya	chi
FBL 4	9.20	7.92	6.05	3.02	6.00	5.33	5.07	6.03
TSFB-1610	9.70	8.20	5.31	4.34	6.20	6.07	6.00	6.91
16ADV0111	9.50	8.52	5.78	2.92	5.71	4.66	7.20	6.27
JPM 18-37	9.40	9.90	9.10	5.31	6.58	5.36	6.83	7.25
PHBF-5	9.80	7.82	6.85	6.04	5.85	5.74	4.21	5.61
RBB-1 (NC)	8.20	8.88	6.91	6.69	7.50	4.87	3.03	6.97
Giant Bajra (NC)	9.90	7.55	6.85	5.71	5.72	5.85	4.17	9.63
AFB-3 (ZC-NWZ)	9.00	10.01	6.60	4.86				
APFB-9-1 (ZC-NEZ)					5.59	4.68	6.54	7.33
Mean	9.34	8.60	6.68	4.86	6.14	5.32	5.38	7.00

Table 6.3 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha/day)

Entries	Ana-	Rah-	Urulikan-	Rai-	Jha-	Coimb-	Hydera-	Man-	Aver-	Ra-
Entries	nd	uri	chan	pur	nsi	atore	bad	dya	age	nk
FBL 4	16.8	5.11	6.63	6.39	4.86	8.47	6.43	7.19	6.91	3
TSFB-1610	12.5	6.61	6.44	6.99	4.04	7.29	6.54	5.47	6.79	5
16ADV0111	14.4	6.13	6.58	7.79	4.17	9.01	5.61	8.89	7.07	2
JPM 18-37	14.0	6.00	6.27	7.72	4.99	7.76	5.26	6.55	7.39	1
PHBF-5	14.9	5.76	7.56	7.28	4.64	7.37	4.82	5.81	6.88	4
RBB-1 (NC)	12.8	7.05	3.98	6.19	4.26	4.55	4.54	5.16	6.35	7
Giant Bajra (NC)	8.8	5.80	5.00	7.85	4.51	6.99	4.32	5.97	6.54	6
BAIF Bajra 1 (ZC-CZ)	12.6	5.90	7.51	8.50	4.21					
Moti Bajra (ZC-SZ)						8.01	3.97	5.35		
Mean	13.34	6.04	6.25	7.34	4.46	7.43	5.19	6.30	6.85	

Table 6.4 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha/day)

Entries	Ludhiana	Hisar	Bikaner	Avikanagar	Pusa	Ayodhya	Ranchi	Bhubaneswar
FBL 4	1.30	0.77	1.49	0.66	1.46	1.13	1.21	1.33
TSFB-1610	1.50	0.64	1.22	0.94	1.46	1.32	1.48	1.51
16ADV0111	1.30	0.72	1.50	0.70	1.36	1.65	1.36	1.15
JPM 18-37	1.30	0.95	1.69	1.01	1.52	1.43	1.68	1.33
PHBF-5	1.60	0.58	1.38	1.18	1.21	1.03	1.12	1.43
RBB-1 (NC)	1.20	1.18	1.71	1.27	1.86	0.72	1.71	1.19
Giant Bajra (NC)	1.40	0.76	1.47	1.13	1.24	0.89	1.97	1.39
AFB-3 (ZC-NWZ)	1.30	0.95	1.09	0.91				
APFB-9-1 (ZC-NEZ)					1.33	1.53	1.47	1.15
Mean	1.36	0.82	1.44	0.98	1.43	1.21	1.50	1.31

Table 6.4 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha/day)

Entries	Anand	Rahuri	Urulikanchan	Raipur	Coimbatore	Hyderabad	Mandya	Average	Rank
FBL 4	2.22	0.90	0.77	1.39	1.68	1.40	1.41	1.27	5
TSFB-1610	1.77	1.14	1.28	1.49	1.45	1.44	1.14	1.32	3
16ADV0111	1.91	0.91	0.99	1.74	1.75	1.22	1.76	1.33	2
JPM 18-37	2.04	1.01	0.90	2.29	1.60	1.22	1.15	1.41	1
PHBF-5	2.28	0.97	1.17	1.60	1.46	0.98	1.13	1.28	4
RBB-1 (NC)	2.31	1.62	0.61	1.31	0.94	1.00	1.12	1.32	3
Giant Bajra (NC)	1.27	1.05	0.64	1.57	1.34	0.92	1.18	1.21	6
BAIF Bajra 1 (ZC-CZ)	1.54	0.85	1.31	1.76					
Moti Bajra (ZC-SZ)					1.63	0.87	1.11		
Mean	1.92	1.06	0.96	1.64	1.48	1.13	1.25	1.31	

Table 6.5 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Crude Protein Yield (q/ha)

Entries		No	rth West Zo	one			North	East Zon	e	
Entries	Ludhiana	Hisar	Bikaner	Average	Rank	Bhubaneswar	Ayodhya	Ranchi	Average	Rank
FBL 4	8.1	5.3	5.4	6.3	7	6.4	5.4	7.8	6.5	5
TSFB-1610	7.1	4.0	8.3	6.4	6	7.2	5.2	9.2	7.2	3
16ADV0111	7.7	4.3	5.7	5.9	8	5.7	9.3	9.2	8.1	1
JPM 18-37	6.0	4.7	11.8	7.5	3	6.2	6.7	9.0	7.3	2
PHBF-5	9.4	3.5	6.9	6.6	5	6.7	5.0	6.0	5.9	7
RBB-1 (NC)	5.9	6.0	11.9	7.9	2	6.0	4.7	8.3	6.3	6
Giant Bajra (NC)	7.3	4.4	12.5	8.1	1	7.1	4.5	10.4	7.3	2
AFB-3 (ZC-NWZ)	7.3	4.4	9.3	7.0	4					
APFB-9-1 (ZC-NEZ)						5.8	7.9	6.7	6.8	4
Mean	7.4	4.6	9.0	7.0		6.4	6.1	8.3	6.9	

Table 6.5 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Crude Protein Yield (q/ha)

		Central Zone							Sc	outh Zone			All India	
Entries	Ana-	Jabal-	Rah-	Urulikan-	Rai-	Aver-	Ra-	Coimb-	Man-	Hydera-	Aver-	Ra-	Aver-	Ra-
	nd	pur	uri	chan	pur	age	nk	atore	dya	bad	age	nk	age	nk
FBL 4	13.8	6.0	5.9	3.1	7.8	7.3	5	12.2	5.9	9.0	9.0	2	7.3	2
TSFB-1610	10.0	8.1	6.0	7.8	6.4	7.7	1	8.2	5.9	9.5	7.9	5	7.3	2
16ADV0111	13.8	5.7	5.2	5.8	6.5	7.4	4	11.0	9.1	8.8	9.6	1	7.7	1
JPM 18-37	13.1	6.8	5.9	3.2	0.0	5.8	8	10.0	6.1	7.8	8.0	4	6.9	3
PHBF-5	12.5	6.7	4.3	5.6	9.2	7.7	2	8.1	4.7	5.4	6.1	6	6.7	5
RBB-1 (NC)	11.1	4.1	7.7	2.8	3.9	5.9	7	5.1	4.0	4.8	4.6	8	6.2	6
Giant Bajra (NC)	7.8	7.1	7.9	3.0	6.0	6.4	6	7.9	4.5	4.8	5.7	7	6.8	4
BAIF Bajra 1 (ZC-CZ)	11.4	4.3	5.4	7.8	9.2	7.6	3							
Moti Bajra (ZC-SZ)								11.8	6.4	6.2	8.1	3		
Mean	11.7	6.1	6.0	4.9	6.1	7.0		9.3	5.8	7.0	7.4		7.0	

Table 6.6 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Crude Protein (%)

Entries		Nort	h West Zone	e			North 1	East Zone		
Entries	Ludhiana	Hisar	Bikaner	Average	Rank	Bhubaneswar	Ayodhya	Ranchi	Average	Rank
FBL 4	8.3	11.3	4.6	8.0	7	7.4	7.9	10.1	8.5	1
TSFB-1610	6.4	10.9	8.7	8.7	4	7.4	8.0	8.8	8.1	5
16ADV0111	7.8	10.3	4.8	7.6	8	7.5	8.5	9.1	8.4	2
JPM 18-37	6.0	9.3	9.8	8.3	5	7.4	7.8	9.6	8.3	3
PHBF-5	8.0	10.2	6.5	8.2	6	7.4	7.6	8.8	7.9	6
RBB-1 (NC)	6.4	10.9	9.8	9.0	3	7.7	8.8	9.1	8.5	1
Giant Bajra (NC)	7.1	9.8	11.2	9.4	2	7.9	7.7	9.8	8.5	1
AFB-3 (ZC-NWZ)	7.3	10.3	11.9	9.8	1					
APFB-9-1 (ZC-NEZ)						7.7	8.7	8.3	8.2	4
Mean	7.2	10.4	8.4	8.6		7.5	8.1	9.2	8.3	

Table 6.6 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Crude Protein (%)

		Central Zone							So	outh Zone			All India	
Entries	Ana-	Jabal-	Rah-	Urulikan-	Rai-	Aver-	Ra-	Coimb-	Man-	Hydera-	Aver-	Ra-	Aver-	Ra-
	nd	pur	uri	chan	pur	age	nk	atore	dya	bad	age	nk	age	nk
FBL 4	11.4	7.1	10.3	6.9	9.7	9.1	1	12.3	10.1	10.2	10.9	4	9.1	2
TSFB-1610	10.0	7.0	9.6	10.4	7.2	8.8	2	10.1	11.4	10.9	10.8	5	9.0	3
16ADV0111	11.1	6.7	9.3	10.0	7.0	8.8	2	11.4	12.3	12	11.9	2	9.1	2
JPM 18-37	11.7	7.0	10.6	6.1	8.5	8.8	2	11.8	11.4	10.8	11.3	3	9.1	2
PHBF-5	9.6	6.9	7.8	8.1	9.9	8.5	3	10.1	10.1	10.1	10.1	7	8.6	5
RBB-1 (NC)	11.3	6.5	9.1	7.9	6.4	8.2	4	10.9	8.3	8.9	9.4	8	8.7	4
Giant Bajra (NC)	10.3	7.0	12.1	8.0	6.8	8.8	2	10.5	10.1	9.9	10.2	6	9.2	1
BAIF Bajra 1 (ZC-CZ)	11.7	6.7	10.3	10.0	7.0	9.1	1							
Moti Bajra (ZC-SZ)								13.1	12.7	12.5	12.8	1		
Mean	10.9	6.9	9.9	8.4	7.8	8.8		11.3	10.8	10.7	10.9		9.0	

AICRP on Forage Crops & Utilization

Table 6.7 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Plant Height (cm)

Entries	Ludhiana	Hisar	Bikaner	Avikanagar	Pusa	Bhubaneswar	Ranchi	Ayodhya
FBL 4	275.0	213.3	206.0	151.5	200.0	206.5	274.0	228.3
TSFB-1610	255.0	189.7	193.0	146.8	220.0	224.1	225.3	239.0
16ADV0111	215.0	237.7	215.0	125.3	185.0	197.4	212.1	189.5
JPM 18-37	260.0	209.0	257.0	166.3	226.6	208.2	258.8	231.8
PHBF-5	265.0	237.7	254.2	193.3	213.3	219.7	252.5	225.3
RBB-1 (NC)	255.0	236.0	224.4	160.0	208.3	201.2	226.8	207.5
Giant Bajra (NC)	250.0	219.7	212.6	177.0	215.0	213.6	217.5	238.5
AFB-3 (ZC-NWZ)	270.0	145.0	209.8	145.7				
APFB-9-1 (ZC-NEZ)					225.0	194.1	217.6	235.3
Mean	255.6	211.0	221.5	158.2	211.7	208.1	235.6	224.4

Table 6.7 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Plant Height (cm)

TO 4 *	Ana-	Jabal-	Rah-	Urulikan-	Rai-	Jha-	Coimb-	Hydera-	Man-	Rai-	Aver-	Ra-
Entries	nd	pur	uri	chan	pur	nsi	atore	bad	dya	chur	age	nk
FBL 4	216.8	221.7	177.1	133.6	248.5	281.7	236.5	215.2	167.8	156.6	211.7	5
TSFB-1610	214.9	282.3	165.0	180.2	242.8	291.0	215.5	202.2	181.1	159.1	212.6	4
16ADV0111	221.3	207.7	146.2	169.9	299.1	290.7	230.5	196.9	155.1	153.3	202.6	7
JPM 18-37	220.9	237.3	149.4	184.6	240.0	258.3	237.5	192.7	151.4	151.5	213.4	2
PHBF-5	219.1	225.3	183.0	186.5	268.2	275.3	235.0	207.1	162.8	153.0	220.9	1
RBB-1 (NC)	226.4	176.3	169.0	169.9	228.1	289.3	215.0	200.5	148.3	159.5	205.6	6
Giant Bajra (NC)	218.7	244.7	175.6	195.4	266.9	286.7	227.5	164.0	151.7	154.7	212.8	3
BAIF Bajra 1 (ZC-CZ)	206.3	183.0	165.3	171.0	291.8	281.7						
Moti Bajra (ZC-SZ)							232.5	192.8	145.4	161.6		
Mean	218.1	222.3	166.3	173.9	260.7	281.8	228.8	196.4	158.0	156.2	211.4	

Table 6.8 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Leaf Stem Ratio

Entries	Ludhiana	Hisar	Bikaner	Avikanagar	Pusa	Bhubaneswar	Ranchi	Ayodhya
FBL 4	0.54	0.73	0.41	0.62	0.50	0.74	0.74	0.58
TSFB-1610	1.00	0.31	0.38	0.53	0.52	0.86	0.61	0.68
16ADV0111	1.00	0.36	0.33	0.70	0.49	0.65	0.68	0.69
JPM 18-37	0.59	0.38	0.52	0.59	0.55	0.70	0.67	0.66
PHBF-5	0.92	0.58	0.40	0.53	0.45	0.79	0.62	0.75
RBB-1 (NC)	1.00	0.51	0.47	0.76	0.41	0.69	0.50	0.61
Giant Bajra (NC)	0.54	0.31	0.31	0.60	0.40	0.83	0.66	0.73
AFB-3 (ZC-NWZ)	1.00	0.55	0.59	0.66				
APFB-9-1 (ZC-NEZ)					0.42	0.63	0.62	0.65
Mean	0.82	0.47	0.43	0.62	0.47	0.74	0.64	0.67

Table 6.8 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: Leaf Stem Ratio

Entries	Anand	Jabalpur	Rahuri	Urulikanchan	Raipur	Jhansi	Coimbatore	Hyderabad	Mandya	Average	Rank
FBL 4	0.86	0.75	0.36	0.67	0.34	0.35	0.23	0.21	0.19	0.52	2
TSFB-1610	0.98	0.68	0.30	0.44	0.40	0.29	0.23	0.22	0.22	0.51	3
16ADV0111	0.91	0.71	0.54	0.49	0.26	0.36	0.27	0.18	0.23	0.52	2
JPM 18-37	0.87	0.80	0.40	0.58	0.42	0.28	0.23	0.14	0.24	0.51	3
PHBF-5	0.65	0.80	0.43	0.65	0.34	0.30	0.20	0.18	0.23	0.52	2
RBB-1 (NC)	1.28	0.67	0.34	0.57	0.30	0.35	0.24	0.19	0.23	0.54	1
Giant Bajra (NC)	0.78	0.87	0.32	0.56	0.31	0.35	0.22	0.19	0.23	0.48	4
BAIF Bajra 1 (ZC-CZ)	0.45	0.70	0.52	0.67	0.23	0.28					
Moti Bajra (ZC-SZ)							0.20	0.19	0.23		
Mean	0.85	0.75	0.40	0.58	0.33	0.32	0.23	0.19	0.23	0.51	

Table 6.9 AVTPM-1: First Advanced Varietal Trial in Forage Pearl millet: ADF (%), NDF (%) & IVDMD (%)

		ADF	(%)				N	DF (%	o)			Γ	VDM	D (%))	
Entries	Rah-	Ludh-	Ran-	Aver-	Ra-	Rah-	Ludh-	Ran-	Aver-	Ra-	Rah-	Ludh-	His-	Ran-	Aver-	Ra-
	uri	iana	chi	age	nk	uri	iana	chi	age	nk	uri	iana	ar	chi	age	nk
FBL 4	46.5	40.2	47.9	44.9	1	71.3	65.6	74.3	70.4	4	52.9	55.6	53.4	51.1	53.2	1
TSFB-1610	50.5	43.8	51.3	48.5	7	70.1	69.8	73.2	71.0	3	49.8	54.2	51.6	48.4	51.0	5
16ADV0111	49.0	42.6	51.2	47.6	5	65.8	66.8	68.3	67.0	5	50.9	51.2	45.5	48.5	49.0	7
JPM 18-37	45.8	43.5	48.2	45.8	3	63.8	70.1	66.4	66.8	6	53.4	49.8	49.7	50.9	50.9	6
PHBF-5	48.5	39.8	49.6	46.0	4	75.0	66.5	75.6	72.4	2	51.3	55.4	52.8	49.8	52.3	3
RBB-1 (NC)	48.3	45.5	49.6	47.8	6	74.8	67.5	75.6	72.6	1	51.5	51.2	52.5	49.8	51.2	4
Giant Bajra (NC)	46.1	42.5	47.3	45.3	2	65.7	67.2	68.2	67.0	5	53.2	49.2	58.4	51.6	53.1	2
AFB-3 (ZC-NWZ)		41.6					69.4					53.6	52.8			
APFB-9-1 (ZC-NEZ)			49.3					74.3						50.0		
BAIF Bajra 1 (ZC-CZ)	47.5					72.5					52.1					
Mean	47.8	42.4	49.3	46.6		69.9	67.9	72.0	69.6		51.9	52.5	52.1	50.0	51.6	

7. AVTPM-2: SECOND ADVANCED VARIETAL TRIAL IN FORAGE PEARL MILLET (Reference Tables: 7.1 to 7.9)

In Forage Pearl Millet, four entries along with two national checks *i.e.* Giant Bajra and RBB-1 and respective zonal checks were evaluated in second Advanced Varietal Trial conducted at 19 locations comprising of 4 locations situated in south zone, 5 in NW, 4 in NE, 6 in central zone.

For green fodder yield (q/ha), entries 16ADV0055 was superior over the best check by a margin of 10.6% in NWZ, 1.4% in CZ, 3.0% in SZ and 11.5% at all India level. Entry JPM-18-7 was superior over the best check by a margin of 10.5% in NWZ, 0.7% in NEZ, 3.1% in SZ and 10.1% at all India level. Entry Dev-1 was superior over the best check by a margin of (8.7% in NWZ, 4.9% in NEZ, 11.7% in SZ, 0.6% in CZ and 15.2% at all India level.

For dry matter yield (q/ha), entries 16ADV0055 was superior over the best check by a margin of 10.6% in NWZ, 6.0% in CZ, and 10.2% at all India level. Entry JPM-18-7 was superior over the best check by a margin of 8.4% in NWZ, 3.0% in CZ, 2.9% in SZ and 11.9% at all India level. Entry Dev-1 was superior over the best check by a margin of (2.1 % in NWZ, 1.7% in NEZ, 13.8% in SZ, 18.8% in CZ and 19.0% at all India level.

For per day productivity, green fodder (q/ha/day), entry JPM-18-7 (7.27q/ha/day) ranked first followed by Dev-1 (7.17) in comparison to best check (6.25). For dry matter per day production potential (q/ha/day) also, entry JPM-18-7 (1.45 q/ha/day) ranked first followed by check RBB-1 (1.31).

For plant height, entry Dev-1 (231.6 cm) ranked first followed by JPM-18-7 (225.7 cm). For leaf stem ratio, Dev-1 first ranked first with a value of 0.55.

For CPY (q/ha), entry JPM-18-7 in NWZ, Dev-1 in NEZ, CZ, SZ and at all India level ranked first. For crude protein content, zonal Check AFB-3 in NWZ, APFB-9 in NEZ, entry Dev-1 in CZ, national check Giant Bajra and BAIF Bajra-7 at SZ and at all India level Dev-1 ranked first. For other quality parameters, entry Dev followed by 16ADV0055 for ADF and IVDMD; 16ADV055 followed by Dev-1 for NDF performed better.

8. AVTPM-2: SECOND ADVANCED VARIETAL TRIAL IN FORAGE PEARL MILLET (SEED)

(Reference Table: 8.1)

In Forage Pearl Millet, four entries along with two national checks *i.e.* Giant Bajra and RBB-1 and respective zonal checks were evaluated in second Advanced Varietal Trial (seed) conducted at 9 locations comprising of 3 locations situated in south zone, 2 in NW, 2 in NE, 2 in central zone.

For seed yield zonal check AFB-3 in NWZ, entry 16ADV0055 in NEZ, JPM-18-7 in CZ, Dev-1 in SZ and JPM-18-7 at all India level ranked first. The superiority in SZ over the best check was 26.1% for Dev-1, 23.6% for JPM-18-7 and 11.6% for 16ADV0055. At all India level also entries JPM-18-7 (13.2%), Dev-1 (7.8%) and 16ADV0055 (2.4%) were superior over the best check.

Table 7.1 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha)

Entries				North W	est Zone	8	\ 1 /	
Entries	Ludhiana	Hisar	Bikaner	Avikanagar	Jalore	Average	Rank	Superiority (%)
JPM-18-7	609.0	589.0	576.8	358.6	269.9	480.7	2	10.5
BAIF Bajra-7	403.5	504.1	457.4	339.6	297.2	400.4	7	
16ADV0055	649.6	561.9	475.4	444.5	272.7	480.8	1	10.6
Dev-1	702.4	537.8	485.3	298.1	339.4	472.6	3	8.7
RBB-1 (NC)	491.3	474.2	542.5	234.0	426.9	433.8	5	
Giant Bajra (NC)	500.0	511.0	447.2	232.0	325.0	403.0	6	
AFB-3 (ZC-NWZ)	528.1	520.1	574.8	301.4	250.0	434.9	4	
Mean	554.8	528.3	508.5	315.5	311.6	443.7		
CD at 5(%)	73.2	115.2	68.7	69.6	119.5			
CV (%)	8.7	12.8	9.0	14.9				

Table 7.1 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha)

Entries				North East Zo	one		
Entries	Pusa	Bhubaneswar	Ranchi	Ayodhya	Average	Rank	Superiority (%)
JPM-18-7	388.3	273.0	344.8	449.0	363.8	2	0.7
BAIF Bajra-7	361.2	389.7	331.0	345.0	356.7	4	
16ADV0055	351.6	371.0	251.0	314.0	321.9	7	
Dev-1	415.4	380.3	360.4	359.0	378.8	1	4.9
RBB-1 (NC)	370.7	297.0	322.9	335.0	331.4	6	
Giant Bajra (NC)	405.6	345.9	306.8	386.0	361.1	3	
APFB-9-1 (ZC-NEZ)	370.7	324.1	238.0	418.0	337.7	5	
Mean	380.5	340.1	307.9	372.3	350.2		
CD at 5(%)	11.8	33.1	24.5	51.3			
CV (%)	7.4	6.6	5.4	10.3			

Table 7.1 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha)

Entries					Central Zon	ie			
	Anand	Jabalpur	Raipur	Rahuri	Urulikanchan	Jhansi	Average	Rank	Superiority (%)
JPM-18-7	813.8	491.9	329.2	354.1	486.6	302.5	463.0	4	
BAIF Bajra-7	720.4	455.4	272.9	404.7	423.4	295.6	428.8	5	
16ADV0055	912.1	551.7	421.9	366.6	492.4	299.2	507.3	1	1.4
Dev-1	912.7	512.7	452.1	361.0	478.3	304.6	503.6	2	0.6
RBB-1 (NC)	423.8	432.0	137.5	363.0	290.5	297.5	324.0	7	
Giant Bajra (NC)	629.2	494.5	281.3	368.7	430.8	296.0	416.8	6	
BAIF Bajra 1 (ZC-CZ)	864.6	530.9	424.0	375.4	507.1	300.0	500.3	3	
Mean	753.8	495.6	331.3	370.5	444.1	299.3	449.1		
CD at 5(%)	145.3	3.1	34.7	37.7	55.0	27.8			
CV (%)	13.0	13.0	7.1	6.1	8.3	6.3			

Table 7.1 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha)

			Sout	h Zone					All India	ì
Entries	Coimb-	Hydera-	Man-	**Rai-	Aver-	Ra-	Superi-	Aver-	Ra-	Superi-
	atore	bad	dya	chur	age	nk	ority%	age	nk	ority%
JPM-18-7	450.0	322.1	294.3	179.9	355.5	2	3.1	427.9	3	10.1
BAIF Bajra-7	442.7	277.7	300.7	162.4	340.4	5		390.1	4	0.4
16ADV0055	439.6	338.8	287.1	233.8	355.1	3	3.0	433.4	2	11.5
Dev-1	503.1	366.5	285.4	177.6	385.0	1	11.7	447.5	1	15.2
RBB-1 (NC)	263.7	230.5	250.6	185.4	248.3	7		343.5	6	
Giant Bajra (NC)	472.9	311.0	250.2	199.8	344.7	4		388.6	5	
Moti Bajra (ZC-SZ)	453.1	266.6	296.1	149.4	338.6	6				
Mean	432.2	301.9	280.6	184.0	338.2			405.2		
CD at 5(%)	33.0	45.2	26.8	7.6						
CV (%)	5.1	8.3	9.2	23.2						

Table 7.2 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha)

Entries				North We	est Zone			
Entries	Ludhiana Hisar 87.0 64.2 55.3 42.6 89.0 64.9 97.6 49.5 69.2 53.0 73.5 49.0 73.4 49.7 77.8 53.3 19.7 14.7	Bikaner	Avikanagar	Jalore	Average	Rank	Superiority (%)	
JPM-18-7	87.0	64.2	138.8	72.8	48.6	82.3	2	8.4
BAIF Bajra-7	55.3	42.6	105.2	62.5	53.4	63.8	7	
16ADV0055	89.0	64.9	113.4	103.6	48.8	83.9	1	10.6
Dev-1	97.6	49.5	109.5	70.4	60.8	77.5	3	2.1
RBB-1 (NC)	69.2	53.0	130.0	51.5	75.9	75.9	4	
Giant Bajra (NC)	73.5	49.0	111.4	43.9	59.4	67.4	5	
AFB-3 (ZC-NWZ)	73.4	49.7	104.3	61.2	45.1	66.7	6	
Mean	77.8	53.3	116.1	66.5	56.0	73.9		
CD at 5(%)	18.7	14.7	15.9	14.8	23.1			
CV (%)	7.2	16.3	9.1	14.9				

Table 7.2 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha)

Entries			Nortl	n East Zone			
Entries	Pusa	Bhubaneswar	Ranchi	Ayodhya	Average	Rank	Superiority (%)
JPM-18-7	87.8	67.4	76.1	98.8	82.5	3	
BAIF Bajra-7	84.4	98.3	66.2	72.4	80.3	4	
16ADV0055	80.6	92.8	54.2	64.4	73.0	6	
Dev-1	92.8	94.0	77.3	77.3	85.3	1	1.7
RBB-1 (NC)	86.7	73.6	70.3	8.4	59.7	7	
Giant Bajra (NC)	89.9	85.4	65.8	94.5	83.9	2	
APFB-9-1 (ZC-NEZ)	90.6	78.7	49.5	98.3	79.3	5	
Mean	87.5	84.3	65.6	73.4	<i>77.7</i>		
CD at 5(%)	6.4	7.8	NS	14.9			
CV (%)	8.6	6.2	6.2	7. 1			

Table 7.2 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha)

Entries				-	Central Zone	2	-		
Entries	Anand	Jabalpur	Raipur	Rahuri	Urulikanchan	Jhansi	Average	Rank	Superiority (%)
JPM-18-7	131.6	103.7	71.2	62.7	116.8	75.8	93.6	3	3.0
BAIF Bajra-7	129.4	96.3	60.1	68.1	72.5	85.2	85.3	5	
16ADV0055	118.5	120.3	107.0	56.5	94.3	81.9	96.4	2	6.0
Dev-1	174.3	109.6	107.7	66.4	105.2	85.0	108.0	1	18.8
RBB-1 (NC)	91.1	90.7	27.8	81.9	56.0	80.4	71.3	7	
Giant Bajra (NC)	91.4	105.0	68.8	60.8	81.5	74.2	80.3	6	
BAIF Bajra 1 (ZC-CZ)	110.5	118.1	97.2	58.0	92.9	69.0	90.9	4	
Mean	121.0	106.2	77.1	64.9	88.5	78.8	89.4		
CD at 5(%)	24.6	0.7	9.2	9.0	3.9	15.9			
CV (%)	13.7	13.0	8.0	9.3	8.8	13.6			

Table 7.2 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha)

Entries			South Zor	ie				All In	dia
Entries	Coimbatore	Hyderabad	Mandya	Average	Rank	Superiority%	Average	Rank	Superiority%
JPM-18-7	82.2	68.1	71.2	73.8	2	2.9	84.7	2	11.9
BAIF Bajra-7	81.6	57.2	74.4	71.1	4		75.8	4	0.1
16ADV0055	80.2	71.6	60.0	70.6	5		83.4	3	10.2
Dev-1	98.8	80.2	65.9	81.6	1	13.8	90.1	1	19.0
RBB-1 (NC)	52.9	48.7	52.0	51.2	7		66.7	6	
Giant Bajra (NC)	87.5	64.4	56.8	69.6	6		75.7	5	
Moti Bajra (ZC-SZ)	91.0	54.7	69.5	71.7	3				
Mean	82.0	63.6	64.3	69.9			79.4		
CD at 5(%)	7.2	9.2	7.0						
CV (%)	5.9	8.1	10.4						

Table 7.3 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha/day)

Entries	Ludhiana	Hisar	Bikaner	Avikanagar	Pusa	Ayodhya	Ranchi	Bhubaneswar
JPM-18-7	8.12	11.27	9.01	6.17	6.20	8.63	4.74	4.22
BAIF Bajra-7	5.38	7.78	6.44	5.14	5.64	5.94	4.37	6.50
16ADV0055	8.66	9.05	6.17	6.32	5.62	5.51	3.13	5.65
Dev-1	9.37	9.12	6.56	4.42	6.74	7.18	4.36	6.13
RBB-1 (NC)	6.55	10.41	9.04	4.50	8.06	6.97	5.10	4.64
Giant Bajra (NC)	6.67	8.52	6.04	3.66	6.34	5.14	4.60	5.67
AFB-3 (ZC-NWZ)	7.04	11.16	9.58	5.68				
APFB-9-1 (ZC-NEZ)					6.86	7.60	3.20	4.99
Mean	7.40	9.62	7.55	5.13	6.49	6.71	4.22	5.40

Table 7.3 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Green Forage Yield (q/ha/day)

Entries	Anand	Jhansi	Rahuri	Urulikanchan	Raipur	Coimbatore	Hyderabad	Mandya	Average	Rank
JPM-18-7	14.28	4.32	6.44	6.40	4.77	8.49	6.25	7.07	7.27	1
BAIF Bajra-7	12.42	4.12	7.49	5.57	3.96	8.35	5.28	7.15	6.35	7
16ADV0055	16.58	4.94	6.11	5.72	5.27	7.58	5.85	6.19	6.77	3
Dev-1	17.22	4.76	5.82	5.56	6.55	8.83	6.32	5.79	7.17	2
RBB-1 (NC)	9.85	4.38	6.72	3.82	3.06	5.27	6.95	5.22	6.28	4
Giant Bajra (NC)	11.87	4.84	6.25	5.67	4.08	8.44	6.14	6.06	6.25	5
BAIF Bajra 1 (ZC-CZ)	13.10	4.24	6.05	5.90	6.14					
Moti Bajra (ZC-SZ)						8.39	5.03	6.68		
Mean	13.62	4.51	6.41	5.52	4.83	7.91	5.97	6.31	6.68	

Table 7.4 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha/day)

Entries	Ludhiana	Hisar	Bikaner	Avikanagar	Pusa	Ayodhya	Ranchi	Bhubaneswar
JPM-18-7	1.16	1.23	2.17	1.25	1.40	1.90	1.05	1.04
BAIF Bajra-7	0.74	0.66	1.48	0.95	1.32	1.24	0.87	1.64
16ADV0055	1.19	1.04	1.47	1.47	1.29	1.13	0.68	1.41
Dev-1	1.30	0.84	1.48	1.04	1.51	1.54	0.93	1.52
RBB-1 (NC)	0.92	1.16	2.17	0.99	1.88	1.67	1.11	1.15
Giant Bajra (NC)	0.98	0.82	1.51	0.69	1.40	1.25	0.99	1.40
AFB-3 (ZC-NWZ)	0.98	1.07	1.74	1.15				
APFB-9-1 (ZC-NEZ)					1.68	1.78	0.67	1.21
Mean	1.04	0.97	1.72	1.08	1.50	1.50	0.90	1.34

Table 7.4 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Dry Matter Yield (q/ha/day)

Entries	Anand	Rahuri	Urulikanchan	Raipur	Hyderabad	Coimbatore	Mandya	Average	Rank
JPM-18-7	2.31	1.14	1.54	1.03	1.32	1.55	1.71	1.45	1
BAIF Bajra-7	2.23	1.26	0.95	0.87	1.09	1.54	1.77	1.24	4
16ADV0055	2.16	0.94	1.10	1.34	1.24	1.38	1.43	1.28	3
Dev-1	3.29	1.07	1.22	1.56	1.38	1.73	1.34	1.45	1
RBB-1 (NC)	2.12	1.52	0.74	0.62	1.47	1.06	1.08	1.31	2
Giant Bajra (NC)	1.72	1.03	1.07	1.00	1.27	1.56	1.37	1.20	5
BAIF Bajra 1 (ZC-CZ)	1.67	0.94	1.08	1.41					
Moti Bajra (ZC-SZ)					1.03	1.68	1.57		
Mean	2.21	1.13	1.10	1.12	1.26	1.50	1.47	1.32	

Table 7.5 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Crude Protein Yield (q/ha)

Entries		Nor	th West Zo	ne		North East Zone						
Entries	Ludhiana	Hisar	Bikaner	Average	Rank	Bhubaneswar	Ayodhya	Ranchi	Average	Rank		
JPM-18-7	5.7	5.7	12.2	7.9	1	5.0	7.9	6.5	6.5	2		
BAIF Bajra-7	3.7	3.9	10.1	5.9	6	7.2	5.5	6.0	6.2	4		
16ADV0055	6.9	7.3	8.7	7.7	2	6.8	5.3	4.5	5.5	7		
Dev-1	7.7	5.4	7.9	7.0	4	7.5	5.9	6.3	6.6	1		
RBB-1 (NC)	5.3	5.2	13.3	7.9	1	5.5	6.3	6.0	5.9	6		
Giant Bajra (NC)	5.1	4.4	10.9	6.8	5	7.0	7.1	5.0	6.3	3		
AFB-3 (ZC-NWZ)	5.1	4.9	12.2	7.4	3							
APFB-9-1 (ZC-NEZ)						6.1	7.7	4.4	6.0	5		
Mean	5.6	5.3	10.8	7.2		6.4	6.5	5. 5	6.2			

Table 7.5 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Crude Protein Yield (q/ha)

			C	entral 2	Zone				So	uth Zone			All Iı	ndia
Entries	Rai-	Ana-	Jabal-	Rah-	Urulikan-	Aver-	Ra-	Coimb-	Man-	Hydera-	Aver-	Ra-	Aver-	Ra-
	pur	nd	pur	uri	chan	age	nk	atore	dya	bad	age	nk	age	nk
JPM-18-7	5.0	11.8	7.0	5.1	12.2	8.2	4	8.6	5.3	5.3	6.4	2	7.4	2
BAIF Bajra-7	5.9	12.2	6.5	6.7	6.0	7.5	5	10.4	4.9	3.9	6.4	2	6.6	4
16ADV0055	7.2	12.4	8.6	4.7	10.3	8.6	2	8.7	3.2	4.5	5.5	5	7.1	3
Dev-1	10.7	16.6	7.8	6.5	11.5	10.6	1	11.3	4.0	5.6	7.0	1	8.2	1
RBB-1 (NC)	1.9	7.7	6.0	7.0	6.0	5.7	7	5.1	2.7	3.1	3.6	6	5.8	5
Giant Bajra (NC)	4.9	8.7	7.3	4.7	8.8	6.9	6	8.8	4.5	5.2	6.2	4	6.6	4
BAIF Bajra 1 (ZC-CZ)	8.7	12.4	8.2	4.7	8.0	8.4	3							
Moti Bajra (ZC-SZ)								10.7	4.6	3.8	6.3	3		
Mean	6.3	11.7	7.3	5.6	9.0	8.0		9.1	4.2	4.5	5.9		6.9	

Table 7.6 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Crude Protein (%)

Entries		Nort	h West Zone			North East Zone						
Entries	Ludhiana	Hisar	Bikaner	Average	Rank	Bhubaneswar	Ayodhya	Ranchi	Average	Rank		
JPM-18-7	6.5	8.9	8.8	8.1	6	7.4	8.0	8.6	8.0	2		
BAIF Bajra-7	6.7	9.2	9.6	8.5	5	7.3	7.6	9.1	8.0	2		
16ADV0055	7.7	11.3	7.7	8.9	3	7.4	8.2	8.3	8.0	2		
Dev-1	7.9	10.8	7.2	8.6	4	8.0	7.7	8.1	7.9	3		
RBB-1 (NC)	7.6	9.8	10.2	9.2	2	7.4	7.9	8.6	8.0	2		
Giant Bajra (NC)	6.9	9.0	9.8	8.6	4	8.1	7.5	7.6	7.7	4		
AFB-3 (ZC-NWZ)	6.9	9.8	11.7	9.5	1							
APFB-9-1 (ZC-NEZ)						7.7	7.8	8.8	8.1	1		
Mean	7.2	9.8	9.3	8.8		7.6	7.8	8.4	8.0			

Table 7.6 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Crude Protein (%)

				Central	Zone				So	outh Zone			All Ir	ıdia
Entries	Rai-	Ana-	Jabal-	Rah-	Urulikan-	Aver-	Ra-	Coimb-	Man-	Hydera-	Aver-	Ra-	Aver-	Ra-
	pur	nd	pur	uri	chan	age	nk	atore	dya	bad	age	nk	age	nk
JPM-18-7	7.0	9.0	6.7	8.1	10.4	8.3	5	10.5	7.4	7.7	8.5	2	8.2	5
BAIF Bajra-7	9.8	9.4	6.7	9.8	8.3	8.8	2	12.7	6.6	6.9	8.7	1	8.6	2
16ADV0055	6.8	10.5	7.1	8.3	10.9	8.7	3	10.9	5.3	6.3	7.5	5	8.3	4
Dev-1	9.9	9.6	7.1	9.8	11.0	9.5	1	11.4	6.1	7.0	8.2	4	8.7	1
RBB-1 (NC)	6.7	8.6	6.6	8.6	10.7	8.2	6	9.6	5.3	6.4	7.1	6	8.1	6
Giant Bajra (NC)	7.2	9.4	7.0	7.8	10.8	8.4	4	10.1	7.9	8.0	8.7	1	8.4	3
BAIF Bajra 1 (ZC-CZ)	8.9	11.2	7.1	8.1	8.6	8.8	2							
Moti Bajra (ZC-SZ)								11.8	6.6	6.9	8.4	3		
Mean	8.0	9.7	6.9	8.6	10.1	8.7		11.0	6.4	7.0	8.2		8.4	

Table 7.7 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Plant Height (cm)

Entries	Ludhiana	Hisar	Bikaner	Avikanagar	Ayodhya	Pusa	Bhubaneswar	Ranchi
JPM-18-7	265.0	239.7	193.4	202.5	258.4	248.3	202.3	260.1
BAIF Bajra-7	275.0	218.0	202.3	220.9	189.2	230.0	214.3	187.4
16ADV0055	275.0	182.0	219.2	259.3	224.0	261.6	212.0	222.6
Dev-1	280.0	207.3	201.2	218.3	270.4	270.0	218.5	219.0
RBB-1 (NC)	285.0	238.0	201.7	179.8	195.2	240.0	195.4	192.0
Giant Bajra (NC)	270.0	204.0	208.4	202.3	268.6	260.0	208.8	172.7
AFB-3 (ZC-NWZ)	280.0	237.7	185.3	178.0				
APFB-9-1 (ZC-NEZ)					246.0	231.6	204.2	199.4
Mean	275.7	218.1	201.6	208.7	236.0	248.8	207.9	207.6

Table 7.7 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Plant Height (cm)

Entries	Ana-	Jabal-	Jha-	Rah-	Urulikan-	Rai-	Coimb-	Hydera-	Man-	Rai-	Aver-	Ra-
Entries	nd	pur	nsi	uri	chan	pur	atore	bad	dya	chur	age	nk
JPM-18-7	221.7	255.0	295.5	154.0	245.4	276.1	246.5	201.2	144.6	153.5	225.7	2
BAIF Bajra-7	225.2	253.0	296.8	160.8	245.9	277.9	258.0	179.7	144.8	153.5	218.5	5
16ADV0055	218.7	272.0	283.0	157.7	226.8	315.5	236.5	179.2	142.3	169.7	225.4	3
Dev-1	220.0	271.0	289.0	155.9	263.3	278.7	277.5	211.0	154.8	162.4	231.6	1
RBB-1 (NC)	233.5	197.0	255.5	153.7	199.8	184.4	230.0	177.5	131.3	140.1	201.7	6
Giant Bajra (NC)	231.9	261.0	269.3	149.7	233.4	275.3	255.4	173.4	146.5	171.9	220.1	4
BAIF Bajra 1 (ZC-CZ)	220.1	278.5	270.0	155.6	231.8	268.3						
Moti Bajra (ZC-SZ)							243.4	198.4	125.1	157.0		
Mean	224.4	255.4	279.9	155.3	235.2	268.0	249.6	188.6	141.3	158.3	220.5	

Table 7.8 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Leaf Stem Ratio

Entries	Ludhiana	Hisar	Bikaner	Avikanagar	Ayodhya	Pusa	Bhubaneswar	Ranchi
JPM-18-7	0.89	0.38	0.62	0.61	0.58	0.49	0.63	0.53
BAIF Bajra-7	0.83	0.44	0.64	0.66	0.65	0.49	0.85	0.62
16ADV0055	0.75	0.38	0.47	0.51	0.68	0.46	0.79	0.61
Dev-1	0.85	0.44	0.62	0.64	0.62	0.57	0.82	0.72
RBB-1 (NC)	0.72	0.38	0.75	0.72	0.56	0.41	0.65	0.56
Giant Bajra (NC)	0.79	0.42	0.50	0.69	0.61	0.59	0.74	0.76
AFB-3 (ZC-NWZ)	0.85	0.46	0.62	0.81				
APFB-9-1 (ZC-NEZ)					0.52	0.48	0.69	0.60
Mean	0.81	0.41	0.60	0.66	0.60	0.50	0.74	0.63

Table 7.8 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: Leaf Stem Ratio

Entries	Ana-	Jabal-	Rah-	Urulikan-	Rai-	Jha-	Coimb-	Hydera-	Man-	Aver-	Ra-
Entries	nd	pur	uri	chan	pur	nsi	atore	bad	dya	age	nk
JPM-18-7	1.06	0.62	0.56	0.60	0.25	0.37	0.24	0.16	0.17	0.52	2
BAIF Bajra-7	0.88	0.61	0.55	0.44	0.24	0.27	0.23	0.18	0.18	0.52	2
16ADV0055	0.78	0.78	0.64	0.49	0.23	0.33	0.25	0.20	0.17	0.50	3
Dev-1	0.83	0.71	0.55	0.69	0.29	0.32	0.24	0.18	0.18	0.55	1
RBB-1 (NC)	0.81	0.59	0.39	0.49	0.26	0.32	0.20	0.20	0.19	0.48	4
Giant Bajra (NC)	0.77	0.66	0.60	0.47	0.24	0.36	0.21	0.27	0.18	0.52	2
BAIF Bajra 1 (ZC-CZ)	0.85	0.71	0.66	0.47	0.29	0.32					
Moti Bajra (ZC-SZ)							0.24	0.20	0.19		
Mean	0.85	0.67	0.56	0.52	0.26	0.33	0.23	0.20	0.18	0.51	

Table 7.9 AVTPM-2: Second Advanced Varietal Trial in Forage Pearl millet: ADF (%), NDF (%) & IVDMD (%)

	ADF (%)					N	DF (%	(o)		IVDMD (%)						
Entries	Rah-	Ludh-	Ran-	Aver-	Ra-	Rah-	Ludh-	Ran-	Aver-	Ra-	Rah-	Ludh-	His-	Ran-	Aver-	Ra-
	uri	iana	chi	age	nk	uri	iana	chi	age	nk	uri	iana	ar	chi	age	nk
JPM-18-7	45.7	47.2	47.3	46.7	6	61.3	62.4	63.5	62.4	3	53.5	48.7	44.4	51.6	49.6	5
BAIF Bajra-7	44.2	46.5	46.1	45.6	5	60.4	66.3	62.2	63.0	4	54.7	49.5	41.9	52.5	49.6	5
16ADV0055	42.2	43.9	44.1	43.4	2	59.3	60.3	61.3	60.3	1	56.2	51.4	46.3	54.1	52.0	2
Dev-1	40.6	45.2	43.2	43.0	1	58.4	62.1	60.8	60.4	2	57.4	52.4	52.7	54.8	54.3	1
RBB-1 (NC)	45.1	43.2	46.8	45.0	4	68.2	62.3	69.2	66.6	6	54.0	53.2	48.0	52.0	51.8	3
Giant Bajra (NC)	43.1	44.3	44.9	44.1	3	62.7	64.1	64.2	63.7	5	55.5	50.9	45.0	53.5	51.2	4
AFB-3 (ZC-NWZ)		45.3					67.4					50.1	45.5			
APFB-9-1 (ZC-NEZ)			44.6					63.2						53.7		
BAIF Bajra 1 (ZC-CZ)	43.1					61.2					55.5					
Mean	43.4	45.1	45.3	44.6		61.6	63.6	63.5	62.7		55.2	50.9	46.2	53.2	51.4	

Table 8.1 AVTPM-2 (Seed): Second Advanced Varietal Trial in Forage Pearl millet (Seed): Seed Yield (q/ha)

	North West Zone				l l	orth E	ast Zoi	ne		Ce	ntral Zo	ne	
Entries	Ludh-	Bika-	Aver-	Ra-	**Ayod-	Pu-	Ra-	Superi-	Rai-	Jabal-	Aver-	Ra-	Superi-
	iana	ner	age	nk	hya	sa	nk	ority (%)	pur	pur	age	nk	ority%
JPM-18-7	24.4	10.0	17.2	3	6.9	10.4	3	5.1	11.5	39.8	25.7	1	3.0
BAIF Bajra-7	16.1	5.0	10.6	7	2.6	8.7	6		10.2	34.5	22.3	4	
Dev-1	28.1	11.0	19.5	2	5.5	11.6	2	17.2	12.2	25.8	19.0	6	
16ADV0055	20.0	6.6	13.3	6	4.5	12.4	1	25.3	13.9	34.0	24.0	3	
RBB-1 (NC)	19.7	11.7	15.7	4	2.1	9.7	5		12.5	32.1	22.3	4	
Giant Bajra (NC)	21.1	7.8	14.4	5	2.9	9.9	4		13.6	36.3	24.9	2	
AFB-3 (ZC-NWZ)	26.0	20.4	23.2	1									
APFB-9-1 (ZC-NEZ)					3.2	8.5	7						
BAIF Bajra 1(ZC-CZ)									12.2	31.2	21.7	5	
Mean	22.2	10.4	16.3			10.2			12.3	33.4	22.8		
CD at 5(%)	3.7	2.2				1.4			2.1	0.3			
CV (%)	8.1	14.2				12.5			11.4	18.7			

Table 8.1 AVTPM-2 (Seed): Second Advanced Varietal Trial in Forage Pearl millet (Seed): Seed Yield (q/ha)

Entries			South	Zone	·		All India				
Entries	Coimbatore	Hyderabad	Mandya	Average	Rank	Superiority%	Average	Rank	Superiority%		
JPM-18-7	18.7	13.1	10.0	13.9	2	23.1	17.3	1	13.2		
BAIF Bajra-7	14.2	8.1	10.8	11.0	6		13.5	6			
Dev-1	20.8	12.2	9.8	14.3	1	26.1	16.4	2	7.8		
16ADV0055	16.5	11.4	10.1	12.6	3	11.6	15.6	3	2.4		
RBB-1 (NC)	12.1	7.5	9.2	9.6	7		14.3	5			
Giant Bajra (NC)	15.4	8.9	9.0	11.1	5		15.2	4			
Moti Bajra (ZC-SZ)	15.2	9.4	9.4	11.3	4						
Mean	16.1	10.1	9.7	12.0			15.4				
CD at 5(%)	0.9	3.6	0.9								
CV (%)	3.6	20.0	9.3								

AICRP on Forage Crops & Utilization

Annual Report Kharif-2021

9. IVTC: INITIAL VARIETAL TRIAL IN FORAGE COWPEA

(Reference Tables: 9.1 to 9.9)

In Forage Cowpea, eight entries along with two national checks *i.e.* Bundel Lobia-1 and UPC-5286; and respective zonal checks were evaluated in Initial Varietal Trial conducted at 26 locations situated in all five zones, 3 in hill, 4 in north-west, 6 in central and 6 in south zone while 7 in north-east zone.

Entry UPC-21-1was superior by a margin of 6.0 % for GFY and 6.7% for DMY over the best check in NEZ. For dry matter yield in central zone, MFC-18-8, MFC-18-10 and PFC-40 were superior over the best check a margins of 11.5%, 14.0% and 7.9% respectively in CZ. In all other zones and all India level, entries were either marginally superior or inferior to best check in the respective zones.

For green and dry fodder production potential (q/ha/day), entry UPC-21-1 ranked first followed by entry MFC-18-8.

For plant height, national check Bundle Lobia-1 was best. For leaf stem ratio, entry HFC-17-7 ranked first (0.87).

For CPY (q/ha), zonal Check UPC-622 ranked first in HZ, entry UPC21-1 in NWZ, and NEZ, zonal check UPC9202 in CZ, MFC 18-10 in SZ. AT all India level, national check UPC 5286 was top ranked.

For crude protein content, entry HFC-17-7 in HZ, zonal check Bundel lobia-2 in NWZ, entry MFC 18-8 in NEZ, zonal check UPC9202 in CZ, entry TSFC-20-06 in SZ ranked first. At all India level, entry MFC-18-8 was best performer (16.2%) followed by entry PFC-40 and national check UPC-5286 (15.5%). For other quality parameters, check Bundel Lobia-1 was best performer for ADF and NDF as well as for IVDMD.

10. AVTC-1: FIRST ADVANCED VARIETAL TRIAL IN FORAGE COWPEA

(Reference Tables: 10.1 to 10.9)

In Forage Cowpea, two entries along with two national checks namely Bundel Lobia-1 and UPC-5286 and respective zonal checks *viz.*, MFC-08-14 for south zone and UPC-628 for NEZ were evaluated in First Advance Varietal Trial at 6 locations in south zone and 7 locations in NEZ.

Zonal check UPC-628 showed superiority for green forage yield (q/ha) whereas national check UPC-5286 showed superiority for dry matter yield (q/ha) in NEZ. National check UPC-5286 showed superiority for green and dry matter yield (q/ha) in SZ. Combining both zones, National check UPC-5286 showed superiority for green and dry matter yield (q/ha).

For green and fodder production potential (q/ha/day), National check UPC-5286 showed superiority.

For plant height, National check UPC-5286 ranked first, whereas for leafiness entry HFC 17-9 was top performer.

For crude protein yield (q/ha), entry HFC-17-9 in SZ, and national check UPC-5286in NEZ ranked first. For crude protein content, entry HFC-17-9 ranked first in SZ (20.7%)while national check UPC 5286 ranked first in NEZ. Combining both zones, entry HFC 17-9 ranked first (17.1%) as compared to best check UPC 5286 (16.7%). For ADF, NDF and IVDMD, national check Bundel Lobia-1 was best performer.

Table 9.1 IVTC: Initial Varietal Trial in Forage Cowpea: Green Forage Yield (q/ha)

			Hill Zo	one					North W	est Zone		
Entries	Palam-	Sri-	Rajo-	Aver-	Ra-	Superi-	Ludh-	Pant-	Bika-	**Jal-	Aver-	Ra-
	pur	nagar	uri	age	nk	ority%	iana	nagar	ner	ore	age	nk
PFC 36	229.6	131.6	183.3	181.5	9		285.2	352.5	178.9	191.7	272.2	11
TNFC 1910	239.2	132.4	193.7	188.4	6		253.4	264.0	331.0	166.7	282.8	9
MFC-18-8	274.0	154.7	214.4	214.4	1	2.1	248.1	246.8	356.8	217.1	283.9	8
UPC 21-1	291.1	133.3	160.6	195.0	4		332.8	394.6	320.2	209.3	349.2	2
HFC 17-7	202.2	143.5	148.3	164.7	10		338.1	345.3	340.7	218.5	341.4	4
MFC-18-10	237.0	129.1	118.2	161.4	11		248.1	321.2	315.0	193.1	294.8	7
PFC 40	271.8	148.8	157.5	192.7	5		221.7	298.4	388.2	181.9	302.8	5
TSFC-20-06	251.8	152.7	143.2	182.6	8		269.3	250.3	386.7	160.7	302.1	6
Bundel Lobia-1(NC)	262.9	155.5	139.4	185.9	7		364.5	244.1	422.8	150.5	343.8	3
UPC-5286 (NC)	273.3	140.5	176.5	196.8	3		353.9	408.7	316.7	94.9	359.8	1
UPC-622 (ZC-HZ)	325.9	145.5	158.2	209.9	2							
Bundel Lobia-2 (ZC-NWZ)							248.2	292.5	288.1	163.4	276.3	10
Mean	259.9	142.5	163.0	188.5			287.6	310.8	331.4	177.1	309.9	
CD at 5%	NS	14.3	1.1				22.4	36.2	69.5	67.5		
CV%	15.4	5.88	11.4				6.91	11.6	12.2			

Note: ** Data is not included in zonal and all India average due to low yield of data

Table 9.1 IVTC: Initial Varietal Trial in Forage Cowpea: Green Forage Yield (q/ha)

					North Ea	st Zone				
Entries	Ayod-	Bhuban-	Jor-	Ran-	Imp-	Pu-	**Kal-	Aver-	Ra-	Superi-
	hya	eswar	hat	chi	hal	sa	yani	age	nk	ority%
PFC 36	347.1	291.6	363.1	221.5	315.8	288.0	166.6	304.5	4	
TNFC 1910	220.5	254.1	258.1	288.2	247.9	276.0	163.8	257.5	10	
MFC-18-8	196.0	334.3	292.4	286.1	269.4	213.0	175.0	265.2	9	
UPC 21-1	379.8	380.2	347.6	302.1	299.7	300.0	172.2	334.9	1	6.0
HFC 17-7	298.1	364.5	304.9	341.0	255.5	290.0	169.4	309.0	3	
MFC-18-10	294.0	314.5	286.5	254.2	242.1	273.0	161.1	277.4	7	
PFC 40	196.0	281.2	309.3	304.9	284.2	296.0	179.1	278.6	6	
TSFC-20-06	199.9	242.7	306.4	236.8	185.2	293.0	150.0	244.0	11	
Bundel Lobia-1(NC)	224.4	309.3	279.5	329.9	210.3	256.0	161.1	268.2	8	
UPC-5286 (NC)	404.3	283.3	281.5	309.7	330.0	286.0	162.5	315.8	2	
TNFC 0926 (ZC-NEZ)	228.7	302.0	349.6	252.8	399.1	284.0	161.1	302.7	5	
Mean	271.7	305.3	307.2	284.3	276.3	277.7	165.6	287.1	4	
CD at 5%	60.3	40.2	5.6	36.7	21.2	21.3	9.8			
CV%	12.9	7.7	5.7	7.6	4.5	9.8	18.2			

Table 9.1 IVTC: Initial Varietal Trial in Forage Cowpea: Green Forage Yield (q/ha)

Entries					Central Zone				
Entries	Anand	Jhansi	Rahuri	Urulikanchan	Raipur	Meerut	Average	Rank	Superiority%
PFC 36	363.4	145.6	345.1	332.4	169.0	411.4	294.5	8	
TNFC 1910	338.9	111.1	400.6	305.6	206.0	376.0	289.7	9	
MFC-18-8	365.7	293.5	391.2	337.1	250.0	350.5	331.3	1	0.8
UPC 21-1	356.9	163.0	392.4	264.8	289.4	419.9	314.4	4	
HFC 17-7	334.7	83.8	276.9	301.0	217.6	418.0	272.0	11	
MFC-18-10	352.8	402.3	289.6	236.1	256.9	355.6	315.6	3	
PFC 40	317.6	363.0	346.1	294.5	125.0	339.2	297.6	7	
TSFC-20-06	289.4	372.0	337.2	225.9	148.2	353.0	287.6	10	
Bundel Lobia-1(NC)	344.4	300.9	353.0	272.2	159.7	358.8	298.2	6	
UPC-5286 (NC)	373.1	100.0	311.5	339.8	331.0	428.5	314.0	5	
UPC-9202 (ZC-CZ)	383.3	118.3	365.3	287.1	312.5	506.2	328.8	2	
Mean	347.3	223.0	346.3	290.6	224.1	392.5	304.0		
CD at 5%	NS	18.7	49.8	52.5	27.7				
CV%	10.4	2.1	8.5	10.5	7.2				

Table 9.1 IVTC: Initial Varietal Trial in Forage Cowpea: Green Forage Yield (q/ha)

	South Zone								All India			
Entries	Coimb-	Man-	Hydera-	Vella-	Rai-	Dhar-	Aver-	Ra-	Aver-	Ra-	Superi-	
	atore	dya	bad	yani	chur	wad	age	nk	age	nk	ority%	
PFC 36	296.3	237.7	231.3	199.0	253.3	344.9	260.4	10	271.6	8		
TNFC 1910	310.2	180.0	180.4	352.0	243.1	326.4	265.3	6	262.0	9		
MFC-18-8	287.0	265.2	189.7	273.0	254.6	340.3	268.3	3	278.5	3		
UPC 21-1	296.3	252.8	198.9	264.0	254.6	328.7	265.9	5	296.8	1	0.5	
HFC 17-7	256.5	198.1	212.8	324.0	268.5	312.5	262.1	8	274.0	5		
MFC-18-10	252.3	271.7	249.8	245.0	238.4	344.9	267.0	4	272.0	7		
PFC 40	306.9	232.6	212.8	287.0	241.7	338.0	269.8	2	273.4	6		
TSFC-20-06	282.4	227.5	222.1	236.0	268.5	331.0	261.2	9	258.8	10		
Bundel Lobia-1(NC)	294.0	238.7	222.1	278.0	239.4	319.4	265.3	6	274.1	4		
UPC-5286 (NC)	298.6	185.7	282.2	320.0	225.5	331.0	273.8	1	295.5	2		
MFC-09-1 (ZC-SZ)	270.8	220.3	212.8	264.0	227.8	377.3	262.2	7				
Mean	286.5	228.2	219.5	276.5	246.9	335.9	265.6		275.7			
CD at 5%	24.5	23.2	NS	9.1	4.1	31.0						
CV%	5.0	11.2	18.4	1.9	9.7	5.4						

Table 9.2 IVTC: Initial Varietal Trial in Forage Cowpea: Dry Matter Yield (q/ha)

Entries	Hill Zone				North West Zone					
Entries	Palampur	Srinagar	Average	Rank	Ludhiana	Pantnagar	Bikaner	**Jalore	Average	Rank
PFC 36	42.9	20.9	31.9	10	62.7	76.1	33.0	29.3	57.3	10
TNFC 1910	44.3	22.0	33.1	9	53.2	58.6	63.1	25.4	58.3	9
MFC-18-8	51.7	26.9	39.3	2	53.4	54.3	63.3	33.3	57.0	11
UPC 21-1	49.5	21.9	35.7	6	74.9	90.0	60.7	32.3	75.2	2
HFC 17-7	36.6	25.0	30.8	11	71.0	72.5	70.0	33.7	71.2	5
MFC-18-10	45.0	22.5	33.7	8	58.5	72.6	60.9	30.1	64.0	7
PFC 40	49.8	27.2	38.5	3	44.3	60.9	92.0	27.8	65.7	6
TSFC-20-06	48.0	25.4	36.7	5	74.1	51.6	90.7	25.2	72.1	3
Bundel Lobia-1(NC)	49.2	26.9	38.1	4	83.9	51.3	79.6	23.3	71.6	4
UPC-5286 (NC)	45.9	22.8	34.3	7	70.8	87.5	71.4	14.9	76.6	1
UPC-622 (ZC-HZ)	64.6	25.3	44.9	1						
Bundel Lobia-2 (ZC-NWZ)					52.1	61.4	68.9	25.1	60.8	8
Mean	47.9	24.3	36.1		63.5	67.0	68.5	27.3	66.3	
CD at 5%	NS	3.4			4.8	5.6	13.9	10.6		
CV%	16.5	8.13			6.7	8.8	11.8			

Table 9.2 IVTC: Initial Varietal Trial in Forage Cowpea: Dry Matter Yield (q/ha)

Entries					North Eas	st Zone				
Entries	Ayodhya	Bhubaneswar	Jorhat	Ranchi	Imphal	Pusa	**Kalyani	Average	Rank	Superiority%
PFC 36	79.7	74.6	67.5	26.1	37.1	71.3	17.6	59.4	3	
TNFC 1910	55.0	62.4	48.8	36.0	36.6	64.2	20.8	50.5	10	
MFC-18-8	47.0	86.2	55.5	34.1	32.2	52.6	20.8	51.3	9	
UPC 21-1	92.9	96.9	58.1	35.0	34.3	75.6	19.2	65.5	1	6.7
HFC 17-7	67.0	93.1	51.0	35.2	29.0	72.2	20.1	57.9	4	
MFC-18-10	71.9	80.5	50.7	26.8	27.2	66.6	19.9	54.0	6	
PFC 40	47.9	73.6	60.6	33.7	28.0	73.3	23.1	52.8	7	
TSFC-20-06	50.0	64.2	56.6	24.6	25.8	72.0	16.8	48.9	11	
Bundel Lobia-1(NC)	53.9	82.4	47.8	39.3	24.7	62.0	15.1	51.7	8	
UPC-5286 (NC)	94.8	72.6	53.0	34.9	44.2	68.4	22.0	61.3	2	
TNFC 0926 (ZC-NEZ)	53.7	78.8	60.5	31.3	50.3	69.2	18.7	57.3	5	
Mean	64.9	78.7	55.5	32.5	33.6	67.9	19.5	55.5		
CD at 5%	14.6	10.7	3.6	10.5	6.0	5.3	2.8			
CV%	6.6	8.0	8.7	6.2	10.4	9.0	6.8			

Note: ** Data is not included in zonal and all India average due to low yield of data

Table 9.2 IVTC: Initial Varietal Trial in Forage Cowpea: Dry Matter Yield (q/ha)

Turkui or			_	Central Z	one			
Entries	Anand	Jhansi	Rahuri	Urulikanchan	Raipur	Average	Rank	Superiority%
PFC 36	44.1	58.2	62.7	56.4	28.8	50.0	9	
TNFC 1910	54.3	44.4	77.3	51.4	31.1	51.7	8	
MFC-18-8	46.5	117.4	68.9	56.6	46.1	67.1	2	11.5
UPC 21-1	45.2	65.2	68.1	46.2	50.2	55.0	6	
HFC 17-7	43.8	33.5	45.2	46.6	39.4	41.7	11	
MFC-18-10	46.8	160.9	52.2	40.3	42.7	68.6	1	14.0
PFC 40	49.3	145.2	60.7	47.1	22.2	64.9	3	7.9
TSFC-20-06	38.7	148.8	56.8	32.6	29.1	61.2	4	1.7
Bundel Lobia-1(NC)	41.5	120.4	63.1	44.5	31.4	60.2	5	
UPC-5286 (NC)	48.6	40.0	52.4	53.9	52.7	49.5	10	
UPC-9202 (ZC-CZ)	48.8	47.3	64.7	46.3	57.2	52.9	7	
Mean	46.1	89.2	61.1	47.4	39.2	56.6		
CD at 5%	NS	3.3	8.7	2.5	5.4			
CV%	12.1	2.1	8.4	9.0	8.0			

Table 9.2 IVTC: Initial Varietal Trial in Forage Cowpea: Dry Matter Yield (q/ha)

Entries			So	outh Zone					All Inc	dia
Entries	Coimbatore	Mandya	Hyderabad	Vellayani	Dharwad	Average	Rank	Average	Rank	Superiority%
PFC 36	58.6	35.5	48.6	49.8	68.2	52.1	10	52.5	8	
TNFC 1910	64.0	28.7	31.9	86.7	76.1	57.5	2	51.9	10	
MFC-18-8	55.2	46.1	38.0	67.4	71.0	55.5	5	55.7	5	
UPC 21-1	55.8	39.1	41.2	65.9	72.1	54.8	6	59.0	1	2.9
HFC 17-7	48.2	30.3	39.6	81.1	65.8	53.0	8	52.2	9	
MFC-18-10	48.2	53.4	50.5	61.3	73.6	57.4	3	57.8	2	0.8
PFC 40	59.4	34.4	41.5	71.8	71.3	55.7	4	56.9	4	
TSFC-20-06	53.6	37.0	40.1	59.0	70.1	52.0	11	54.7	7	
Bundel Lobia-1(NC)	60.2	31.8	37.2	69.6	65.8	52.9	9	55.5	6	
UPC-5286 (NC)	59.4	28.3	52.5	79.9	69.5	57.9	1	57.3	3	
MFC-09-1 (ZC-SZ)	51.4	30.3	40.7	65.1	79.5	53.4	7			
Mean	55.8	35.9	42.0	68.9	71.2	54.7		55.3		
CD at 5%	4.6	3.1	NS	6.5	7.1					
CV%	4.8	9.7	19.8	5.5	5.8					

Table 9.3 IVTC: Initial Varietal Trial in Forage Cowpea: Green Forage Yield (q/ha/day)

Entries	Palampur	Srinagar	Ludhiana	Pantnagar	Bikaner	Ayodhya	Kalyani	Bhubaneswar	Jorhat	Ranchi	Pusa
PFC 36	3.17	1.34	3.96	3.92	2.23	5.88	2.31	4.70	5.59	3.91	3.86
TNFC 1910	3.64	1.68	3.52	3.47	4.14	3.50	2.28	3.93	4.16	5.92	3.77
MFC-18-8	4.32	1.15	3.45	3.12	4.46	3.16	2.43	5.09	4.57	6.09	3.18
UPC 21-1	4.53	1.11	4.62	4.29	4.00	6.54	2.39	6.03	5.99	6.21	3.76
HFC 17-7	2.78	1.15	4.7	3.97	4.26	4.73	2.35	5.52	4.92	5.44	3.81
MFC-18-10	3.67	1.00	3.45	3.91	3.94	5.25	2.24	4.89	4.86	3.89	3.72
PFC 40	4.24	1.22	3.08	3.68	4.85	3.26	2.49	4.49	4.91	6.06	3.76
TSFC-20-06	3.78	1.20	3.74	3.21	4.83	3.44	2.08	3.85	5.34	5.19	3.78
Bundel Lobia-1(NC)	3.75	1.19	5.06	3.17	5.28	3.67	2.24	4.96	4.66	5.00	3.41
UPC-5286 (NC)	4.13	1.20	4.92	4.64	3.96	6.52	2.26	4.15	4.35	4.58	3.84
UPC-622 (ZC-HZ)	5.56	1.16									
Bundel Lobia-2 (ZC-NWZ)			3.45	3.15	3.60	3.57					
TNFC 0926 (ZC-NEZ)							2.24	4.77	5.22	5.74	3.93
Mean	3.96	1.22	4.00	3.68	4.14	4.50	2.30	4.76	4.96	5.27	3.71

Table 9.3 IVTC: Initial Varietal Trial in Forage Cowpea: Green Forage Yield (q/ha/day)

Entries	Ana-	Jha-	Rah-	Urulikan-	Rai-	Coimb-	Man-	Hydera-	Vella-	Dhar-	Aver-	Ra-
Entries	nd	nsi	uri	chan	pur	atore	dya	bad	yani	wad	age	nk
PFC 36	5.19	1.95	6.24	5.19	2.45	5.93	4.15	4.33	4.40	5.75	4.12	9
TNFC 1910	6.16	1.50	10.27	5.27	3.68	6.08	3.65	3.43	7.80	5.44	4.44	4
MFC-18-8	6.42	3.95	9.86	5.62	4.72	5.32	4.98	3.74	6.10	5.67	4.64	2
UPC 21-1	6.05	2.19	7.31	4.34	4.45	5.81	4.74	3.78	5.80	5.48	4.73	1
HFC 17-7	5.07	1.04	5.06	4.70	2.98	5.03	3.79	4.20	7.20	5.21	4.19	8
MFC-18-10	6.19	5.01	6.79	3.69	4.76	4.59	5.30	4.89	5.40	5.75	4.44	4
PFC 40	5.67	4.90	8.51	4.91	2.36	6.02	4.73	3.97	6.40	5.63	4.53	3
TSFC-20-06	5.36	4.61	7.90	3.83	3.02	5.04	4.91	4.34	5.20	5.52	4.29	7
Bundel Lobia-1(NC)	6.26	3.73	8.08	4.54	1.84	5.25	4.60	4.58	6.20	5.32	4.42	6
UPC-5286 (NC)	5.18	1.35	5.13	5.23	4.53	5.43	3.64	5.40	7.10	5.52	4.43	5
UPC-9202 (ZC-CZ)	5.48	1.50	6.76	4.48	4.96							
MFC-09-1 (ZC-SZ)						5.42	3.85	4.06	5.80	6.29		
Mean	5.73	2.88	7.45	4.71	3.61	5.45	4.39	4.25	6.13	5.60	4.42	

AICRP on Forage Crops & Utilization

Annual Report Kharif-2021

Table 9.4 IVTC: Initial Varietal Trial in Forage Cowpea: Dry Matter Yield (q/ha/day)

Entries	Palampur	Srinagar	Ludhiana	Pantnagar	Bikaner	Ayodhya	Kalyani	Bhubaneswar	Jorhat	Ranchi	Pusa
PFC 36	0.59	0.27	0.87	0.85	0.41	1.27	0.24	1.20	1.04	0.46	0.96
TNFC 1910	0.67	0.29	0.74	0.77	0.79	0.87	0.29	0.97	0.79	0.74	0.88
MFC-18-8	0.82	0.29	0.74	0.69	0.79	0.75	0.29	1.31	0.87	0.73	0.79
UPC 21-1	0.77	0.24	1.04	0.98	0.76	1.47	0.27	1.54	1.00	0.72	0.95
HFC 17-7	0.50	0.23	0.99	0.83	0.88	1.06	0.28	1.41	0.82	0.56	0.95
MFC-18-10	0.70	0.27	0.81	0.89	0.76	1.14	0.28	1.25	0.86	0.41	0.91
PFC 40	0.78	0.34	0.62	0.75	1.15	0.76	0.32	1.17	0.97	0.67	0.93
TSFC-20-06	0.72	0.28	1.03	0.66	1.13	0.79	0.23	1.02	0.98	0.54	0.93
Bundel Lobia-1(NC)	0.70	0.28	1.17	0.67	1.00	0.86	0.21	1.32	0.80	0.60	0.83
UPC-5286 (NC)	0.69	0.28	0.98	0.99	0.89	1.50	0.31	1.06	0.82	0.52	0.92
UPC-622 (ZC-HZ)	1.10	0.30									
Bundel Lobia-2 (ZC-NWZ)			0.72	0.66	0.86						
TNFC 0926 (ZC-NEZ)						0.85	0.26	1.24	0.90	0.71	0.96
Mean	0.73	0.28	0.88	0.79	0.86	1.03	0.27	1.23	0.90	0.60	0.91

Table 9.4 IVTC: Initial Varietal Trial in Forage Cowpea: Dry Matter Yield (q/ha/day)

T-4-i-a	Ana-	Jha-	Rah-	Urulikan-	Rai-	Coimb-	Man-	Hydera-	Vella-	Dhar-	Aver-	Ra-
Entries	nd	nsi	uri	chan	pur	atore	dya	bad	yani	wad	age	nk
PFC 36	0.63	0.78	1.13	0.88	0.42	1.17	0.62	0.91	1.10	1.14	0.81	5
TNFC 1910	0.99	0.60	1.98	0.89	0.55	1.26	0.58	0.61	1.96	1.27	0.88	3
MFC-18-8	0.82	1.58	1.74	0.94	0.87	1.02	0.86	0.75	1.50	1.18	0.92	2
UPC 21-1	0.77	0.88	1.27	0.76	0.77	1.09	0.73	0.78	1.50	1.20	0.93	1
HFC 17-7	0.66	0.42	0.83	0.73	0.54	0.94	0.58	0.78	1.80	1.10	0.80	6
MFC-18-10	0.82	2.00	1.22	0.63	0.79	0.88	1.04	0.99	1.40	1.23	0.92	2
PFC 40	0.88	1.96	1.49	0.78	0.42	1.17	0.70	0.77	1.60	1.19	0.92	2
TSFC-20-06	0.72	1.84	1.33	0.55	0.59	0.96	0.80	0.78	1.30	1.17	0.87	4
Bundel Lobia-1(NC)	0.76	1.49	1.45	0.74	0.36	1.07	0.61	0.77	1.60	1.10	0.88	3
UPC-5286 (NC)	0.67	0.54	0.86	0.83	0.72	1.08	0.56	1.01	1.80	1.16	0.87	4
UPC-9202 (ZC-CZ)	0.70	0.60	1.20	0.72	0.91							
MFC-09-1 (ZC-SZ)						1.03	0.53	0.77	1.40	1.33		
Mean	0.77	1.15	1.32	0.77	0.63	1.06	0.69	0.81	1.54	1.19	0.88	

Table 9.5 IVTC: Initial Varietal Trial in Forage Cowpea: Crude Protein Yield (q/ha)

Entries	Hill	Zone			North West Zo	ne	
Entries	Palampur	Rank	Ludhiana	Bikaner	Pantnagar	Average	Rank
PFC 36	8.3	9	8.6	4.8	13.3	8.9	11
TNFC 1910	8.1	10	7.9	9.4	10.8	9.3	10
MFC-18-8	10.3	2	8.5	10.1	10.5	9.7	8
UPC 21-1	9.7	3	11.0	7.9	15.7	11.5	1
HFC 17-7	7.5	11	9.0	10.0	13.3	10.8	4
MFC-18-10	8.9	6	8.5	8.6	13.3	10.1	7
PFC 40	9.4	4	6.0	11.9	10.7	9.5	9
TSFC-20-06	9.2	5	11.5	13.0	9.5	11.3	3
Bundel Lobia-1(NC)	8.8	7	11.4	11.3	9.0	10.5	5
UPC-5286 (NC)	8.5	8	9.2	10.4	14.5	11.4	2
UPC-622 (ZC-HZ)	12.4	1					
Bundel Lobia-2 (ZC-NWZ)			9.2	10.6	11.3	10.3	6
Mean	9.2		9.2	9.8	12.0	10.3	

Table 9.5 IVTC: Initial Varietal Trial in Forage Cowpea: Crude Protein Yield (q/ha)

				North Ea	st Zone						Central Z	one		
Entries	Kal-	Bhuban-	Jor-	Imp-	Ayod-	Ran-	Aver-	Ra-	Ana-	Rah-	Urulikan-	Rai-	Aver-	Ra-
	yani	eswar	hat	hal	hya	chi	age	nk	nd	uri	chan	pur	age	nk
PFC 36	2.2	10.4	8.6	5.2	13.5	5.2	7.5	3	5.7	9.0	12.2	3.5	7.6	6
TNFC 1910	2.7	9.4	6.3	5.3	9.1	5.5	6.4	9	6.8	11.7	9.3	4.1	8.0	4
MFC-18-8	3.5	11.9	7.5	5.6	7.7	5.1	6.9	6	5.7	8.2	13.8	6.0	8.4	3
UPC 21-1	2.9	13.6	7.4	5.3	15.5	5.4	8.3	1	5.4	10.0	9.4	6.3	7.8	5
HFC 17-7	2.5	13.0	6.7	4.3	11.2	5.7	7.2	4	5.6	8.9	9.0	4.7	7.0	8
MFC-18-10	2.3	11.2	6.5	4.1	12.2	4.3	6.8	7	4.9	10.1	7.0	6.0	7.0	8
PFC 40	3.9	10.0	8.0	4.2	8.1	5.1	6.5	8	6.5	9.6	10.4	2.8	7.3	7
TSFC-20-06	1.9	8.7	7.4	3.9	8.7	3.5	5.7	11	5.7	8.4	5.4	3.3	5.7	10
Bundel Lobia-1(NC)	2.1	11.0	5.9	3.7	9.1	5.5	6.2	10	4.6	9.1	7.8	4.0	6.4	9
UPC-5286 (NC)	3.3	10.1	7.3	6.3	16.3	4.9	8.0	2	5.5	7.9	12.4	8.4	8.5	2
TNFC 0926 (ZC-NEZ)	2.6	10.8	7.7	7.2	8.9	4.7	7.0	5						
UPC-9202 (ZC-CZ)									7.4	12.6	9.7	7.6	9.3	1
Mean	2.7	10.9	7.2	5.0	10.9	5.0	7.0		5.8	9.6	9.7	5.1	7.5	

Table 9.5 IVTC: Initial Varietal Trial in Forage Cowpea: Crude Protein Yield (q/ha)

Entries		=!	South Zone	-		All I	ndia
Entries	Coimbatore	Mandya	Hyderabad	Average	Rank	Average	Rank
PFC 36	9.3	4.2	7.2	6.9	5	7.7	5
TNFC 1910	9.5	4.6	4.5	6.2	8	7.4	7
MFC-18-8	7.9	8.9	5.0	7.3	3	8.0	3
UPC 21-1	6.1	4.8	4.7	5.2	9	8.3	2
HFC 17-7	8.2	4.2	6.4	6.3	7	7.7	5
MFC-18-10	8.2	8.4	8.6	8.4	1	7.8	4
PFC 40	10.2	4.1	6.9	7.1	4	7.5	6
TSFC-20-06	10.1	5.5	7.1	7.5	2	7.2	9
Bundel Lobia-1(NC)	10.0	5.1	6.1	7.1	4	7.3	8
UPC-5286 (NC)	8.1	5.5	7.2	6.9	5	8.6	1
MFC-09-1 (ZC-SZ)	8.3	5.7	6.3	6.8	6		
Mean	8.7	5.5	6.4	6.9		7.7	

Table 9.6 IVTC: Initial Varietal Trial in Forage Cowpea: Crude Protein (%)

Entries	Hill Zon	e		No	orth West Zone		
Entries	Palampur	Rank	Ludhiana	Bikaner	Pantnagar	Average	Rank
PFC 36	19.3	4	13.7	14.6	17.5	15.3	5
TNFC 1910	18.4	7	14.8	14.9	18.4	16.0	3
MFC-18-8	19.8	2	15.9	16.0	19.3	17.1	1
UPC 21-1	19.5	3	14.7	13.0	17.5	15.1	6
HFC 17-7	20.4	1	12.7	14.3	18.4	15.1	6
MFC-18-10	19.8	2	14.5	14.1	18.4	15.7	4
PFC 40	19.0	5	13.6	12.9	17.5	14.7	7
TSFC-20-06	19.3	4	15.5	14.3	18.5	16.1	2
Bundel Lobia-1(NC)	17.8	8	13.6	14.1	17.5	15.1	6
UPC-5286 (NC)	18.7	6	13.0	14.6	16.6	14.7	7
UPC-622 (ZC-HZ)	19.3	4					
Bundel Lobia-2 (ZC-NWZ)			17.6	15.4	18.4	17.1	1
Mean	19.2		14.5	14.4	18.0	15.6	

Table 9.6 IVTC: Initial Varietal Trial in Forage Cowpea: Crude Protein (%)

				North Ea	st Zone						Central 2	Zone		
Entries	Kal-	Bhuban-	Jor-	Imp-	Ayod-	Ran-	Aver-	Ra-	Ana-	Rah-	Urulikan-	Rai-	Aver-	Ra-
	yani	eswar	hat	hal	hya	chi	age	nk	nd	uri	chan	pur	age	nk
PFC 36	12.3	14.0	12.8	14.1	16.9	19.9	15.0	3	12.9	14.4	21.6	12.1	15.2	4
TNFC 1910	13.1	15.1	13.1	14.4	16.6	15.4	14.6	6	12.5	15.1	18.2	13.1	14.7	5
MFC-18-8	16.8	13.9	13.7	17.2	16.4	15.1	15.5	1	12.2	15.6	24.3	13.0	16.3	2
UPC 21-1	15.2	14.0	12.9	15.4	16.7	15.4	14.9	4	12.0	15.9	20.4	12.5	15.2	4
HFC 17-7	12.6	14.0	13.3	14.8	16.8	16.1	14.6	6	12.8	16.9	19.4	12.0	15.2	4
MFC-18-10	11.6	14.0	12.9	15.1	17.0	16.1	14.4	7	10.5	16.6	17.5	14.0	14.7	5
PFC 40	16.7	13.6	13.3	15.1	16.9	15.1	15.1	2	13.2	15.9	22.0	12.5	15.9	3
TSFC-20-06	11.1	13.5	13.2	15.0	17.4	14.4	14.1	9	14.9	14.9	16.6	11.2	14.4	6
Bundel Lobia-1(NC)	13.6	13.4	12.4	14.8	16.8	13.9	14.2	8	11.0	14.4	17.6	12.7	13.9	7
UPC-5286 (NC)	14.8	13.9	13.9	14.2	17.2	14.1	14.7	5	11.3	15.1	22.9	15.9	16.3	2
TNFC 0926 (ZC-NEZ)	14.1	13.7	12.9	14.2	16.5	14.9	14.4	7						
UPC-9202 (ZC-CZ)									15.1	19.4	21.0	13.3	17.2	1
Mean	13.8	13.9	13.1	15.0	16.8	15.5	14.7		12.6	15.8	20.1	12.9	15.4	

Table 9.6 IVTC: Initial Varietal Trial in Forage Cowpea: Crude Protein (%)

Entries		6	South Zone			All	India
Entries	Coimbatore	Mandya	Hyderabad	Average	Rank	Average	Rank
PFC 36	15.8	11.8	14.7	14.1	10	15.2	5
TNFC 1910	14.9	16.2	14.0	15.0	9	15.2	5
MFC-18-8	14.4	19.3	13.1	15.6	6	16.2	1
UPC 21-1	10.9	12.3	11.4	11.5	11	14.7	7
HFC 17-7	17.1	14.0	16.3	15.8	5	15.4	3
MFC-18-10	17.1	15.8	17.1	16.7	3	15.4	3
PFC 40	17.1	11.8	16.8	15.2	8	15.5	2
TSFC-20-06	18.8	14.9	17.5	17.1	1	15.3	4
Bundel Lobia-1(NC)	16.6	16.2	16.3	16.4	4	14.9	6
UPC-5286 (NC)	13.6	19.3	13.7	15.5	7	15.5	2
MFC-09-1 (ZC-SZ)	16.2	18.8	15.6	16.9	2		
Mean	15.7	15.5	15.1	15.4		15.3	

Table 9.7 IVTC: Initial Varietal Trial in Forage Cowpea: Plant Height (cm)

Entries	Palam-	Sri-	Ludh-	Pant-	Bika-	Ayod-	Kal-	Bhuban-	Jor-	Ran-	Imp-	Pu-
Entries	pur	nagar	iana	nagar	ner	hya	yani	eswar	hat	chi	hal	sa
PFC 36	155.0	154.0	54.0	215.8	117.0	144.8	101.2	190.2	101.1	134.7	147.2	200.0
TNFC 1910	178.7	107.0	179.5	232.3	103.0	160.2	87.1	165.1	101.8	153.7	180.1	205.0
MFC-18-8	122.7	118.3	150.0	208.2	118.0	139.4	89.8	214.6	103.8	129.9	145.2	188.3
UPC 21-1	110.3	106.6	112.5	195.8	148.0	140.8	91.5	229.7	97.3	162.0	185.4	221.6
HFC 17-7	150.7	112.3	119.0	196.4	129.0	159.3	90.4	221.8	107.1	171.2	174.0	208.3
MFC-18-10	167.0	108.3	124.0	182.7	167.0	151.8	93.9	209.1	105.8	154.3	147.2	190.0
PFC 40	136.7	111.3	92.5	232.1	141.0	123.8	84.4	173.3	101.1	162.1	168.8	185.0
TSFC-20-06	132.0	109.6	110.5	240.5	157.0	130.8	96.7	157.3	102.1	134.3	137.6	220.0
Bundel Lobia-1(NC)	120.3	112.6	182.5	321.6	157.0	132.9	100.1	198.6	105.3	170.7	139.2	181.6
UPC-5286 (NC)	138.0	109.6	246.5	255.3	108.0	109.4	93.1	181.5	103.5	135.1	187.4	168.3
UPC-622 (ZC-HZ)	198.3	116.6										
Bundel Lobia-2 (ZC-NWZ)			155.5	228.6	148.0							
TNFC 0926 (ZC-NEZ)						156.4	95.0	194.3	110.0	169.7	188.6	200.0
Mean	146.3	115.1	138.8	228.1	135.7	140.9	93.0	194.1	103.5	152.5	163.7	197.1

Table 9.7 IVTC: Initial Varietal Trial in Forage Cowpea: Plant Height (cm)

Entries	Ana-	Jha-	Rah-	Urulikan-	Rai-	Coimb-	Man-	Hydera-	Vella-	Rai-	Aver-	Ra-
Entries	nd	nsi	uri	chan	pur	atore	dya	bad	yani	chur	age	nk
PFC 36	124.0	172.1	111.6	117.1	204.3	106.5	58.0	144.0	92.0	150.1	136.1	10
TNFC 1910	131.7	302.7	115.0	158.2	216.3	123.5	71.8	204.0	166.0	156.7	159.1	2
MFC-18-8	123.5	223.6	96.0	136.6	212.4	106.5	73.2	257.0	103.0	146.6	145.8	7
UPC 21-1	118.0	240.2	90.4	117.0	187.4	120.5	72.2	221.0	86.0	154.5	145.9	6
HFC 17-7	123.5	249.7	84.5	126.1	200.0	110.5	72.3	182.0	109.0	148.5	147.5	3
MFC-18-10	129.7	205.2	90.6	122.4	203.5	98.5	78.9	245.0	97.0	150.1	146.5	5
PFC 40	127.6	278.2	105.6	109.9	188.2	120.0	56.1	175.0	93.0	147.2	141.5	8
TSFC-20-06	130.7	195.9	93.0	123.1	172.9	97.5	53.4	242.0	75.0	150.7	139.2	9
Bundel Lobia-1(NC)	125.5	260.0	114.6	122.6	231.9	97.5	56.9	304.0	152.0	142.4	160.4	1
UPC-5286 (NC)	124.7	202.9	96.7	134.4	202.4	118.5	77.1	189.0	89.0	157.0	146.7	4
UPC-9202 (ZC-CZ)	123.5	183.3	73.1	119.0	204.4							
MFC-09-1 (ZC-SZ)						118.5	65.9	277.0	97.0	140.9		
Mean	125.7	228.5	97.4	126.0	202.1	110.7	66.9	221.8	105.4	149.5	146.9	

AICRP on Forage Crops & Utilization

Annual Report Kharif-2021

Table 9.8 IVTC: Initial Varietal Trial in Forage Cowpea: Leaf Stem Ratio

Entries	Palam-	Ludh-	Pant-	Bika-	Ayod-	Kal-	Bhuban-	Jor-	Ran-	Imp-	Pu-
Entries	pur	iana	nagar	ner	hya	yani	eswar	hat	chi	hal	sa
PFC 36	0.58	0.56	1.00	1.33	0.68	0.82	0.95	0.80	0.96	0.74	0.60
TNFC 1910	0.63	0.39	0.73	1.02	0.65	0.79	0.89	0.64	0.95	0.50	0.58
MFC-18-8	0.66	0.41	1.18	0.89	0.69	0.96	1.17	0.76	0.89	0.50	0.47
UPC 21-1	0.50	0.42	1.20	1.19	0.61	0.76	1.29	0.85	0.86	0.69	0.65
HFC 17-7	0.55	0.37	1.53	0.80	0.58	0.85	1.24	0.83	0.93	0.95	0.60
MFC-18-10	0.60	0.34	1.02	0.85	0.62	0.79	1.08	0.69	0.94	0.83	0.57
PFC 40	0.59	1.13	1.01	0.90	0.61	0.73	0.90	0.70	0.92	0.73	0.63
TSFC-20-06	0.49	0.60	0.76	0.62	0.60	0.81	0.87	0.83	0.83	0.43	0.61
Bundel Lobia-1(NC)	0.58	0.80	1.08	0.92	0.57	0.67	1.02	0.58	0.94	0.87	0.53
UPC-5286 (NC)	0.57	0.85	1.20	0.64	0.56	0.83	0.91	0.80	0.93	0.85	0.60
UPC-622 (ZC-HZ)	0.44										
Bundel Lobia-2 (ZC-NWZ)		1.30	0.81	1.03							
TNFC 0926 (ZC-NEZ)					0.52	0.93	0.98	0.59	0.91	0.73	0.58
Mean	0.56	0.65	1.05	0.93	0.61	0.81	1.03	0.73	0.91	0.71	0.58

Table 9.8 IVTC: Initial Varietal Trial in Forage Cowpea: Leaf Stem Ratio

Entries	Jhansi	Rahuri	Urulikanchan	Raipur	Coimbatore	Mandya	Hyderabad	Vellayani	Average	Rank
PFC 36	1.09	0.80	0.87	0.42	0.34	0.72	0.98	1.40	0.82	2
TNFC 1910	0.85	0.66	1.21	0.34	0.35	0.56	0.54	1.20	0.71	6
MFC-18-8	1.12	0.74	0.73	0.34	0.32	0.83	0.65	1.40	0.77	4
UPC 21-1	0.82	0.92	1.04	0.45	0.34	0.52	0.89	1.30	0.80	3
HFC 17-7	1.25	0.90	1.32	0.46	0.35	0.77	0.85	1.40	0.87	1
MFC-18-10	0.68	0.92	1.25	0.38	0.38	0.79	0.83	1.10	0.77	4
PFC 40	0.79	0.75	0.91	0.39	0.30	0.69	0.75	1.30	0.77	4
TSFC-20-06	0.62	0.83	1.20	0.34	0.32	0.58	0.64	1.30	0.70	7
Bundel Lobia-1(NC)	0.65	0.80	1.01	0.29	0.33	0.54	0.51	1.20	0.73	5
UPC-5286 (NC)	0.63	0.87	0.98	0.45	0.35	0.61	0.84	1.20	0.77	4
UPC-9202 (ZC-CZ)	1.44	0.96	1.16	0.45						
MFC-09-1 (ZC-SZ)					0.35	0.68	0.77	1.30		
Mean	0.90	0.83	1.06	0.39	0.34	0.66	0.75	1.28	0.77	

Table 9.9 IVTC: Initial Varietal Trial in Forage Cowpea: ADF (%), NDF (%) & IVDMD (%)

Entries	ADF	(%)	NDF	(%)	IVDMD ((%)
Entries	Ludhiana	Rank	Ludhiana	Rank	Ludhiana	Rank
PFC 36	44.5	9	67.4	5	55.4	6
TNFC 1910	43.2	6	68.5	7	56.7	4
MFC-18-8	40.3	3	67.2	4	58.7	3
UPC 21-1	44.2	8	66.5	3	56.0	5
HFC 17-7	43.2	6	68.7	8	50.2	11
MFC-18-10	42.1	5	66.4	2	54.2	7
PFC 40	43.5	7	67.4	5	51.4	10
TSFC-20-06	40.2	2	63.5	1	59.7	2
Bundel Lobia-1(NC)	41.2	4	68.1	6	52.3	9
UPC-5286 (NC)	44.5	9	67.2	4	52.4	8
Bundel Lobia-2 (ZC-NWZ)	39.2	1	63.5	1	60.2	1
Mean	42.4		66.8		55.2	

Table 10.1: AVTC-1: First Advanced Varietal Trial in Cowpea: Green Forage Yield (q/ha)

Entrica				North Ea	ast Zone				
Entries	Ayodhya	Bhubaaneswar	Ranchi	Jorhat	Kalyani	Imphal	Pusa	Average	Rank
HFC17-9	312.4	345.9	191.7	325.9	187.5	305.2	240.0	272.7	4
MFC-16-8	349.1	298.5	171.4	133.8	180.0	226.7	279.0	234.1	5
UPC-5286 (NC)	332.2	367.3	210.7	282.6	178.3	370.4	265.0	286.7	2
Bundel Lobia-1 (NC)	320.0	313.1	163.0	305.5	191.6	392.5	290.0	282.2	3
UPC-628 (ZC-NEZ)	304.7	378.3	229.2	287.0	199.1	370.0	268.0	290.9	1
Mean	323.7	340.6	193.2	267.0	187.3	333.0	268.4	273.3	
CD at 5%	32.8	22.8	16.3	2.9	10.4	32.0	14.2		
CV%	12.6	4.3	5.5	4.7	7.3	5.4	9.6		

Table 10.1: AVTC-1: First Advanced Varietal Trial in Cowpea: Green Forage Yield (q/ha)

Entries	_			South Zo	ne				All Inc	dia
Entries	Coimbatore	Vellayani	Mandya	Hyderabad	Raichur	Dharwad	Average	Rank	Average	Rank
HFC17-9	287.5	200.0	235.2	211.0	245.9	285.4	244.2	2	259.5	2
MFC-16-8	229.2	173.0	150.0	258.2	244.8	259.4	219.1	5	227.2	4
UPC-5286 (NC)	264.6	194.0	248.0	236.0	238.1	310.4	248.5	1	269.0	1
Bundel Lobia-1 (NC)	253.1	165.0	182.8	233.2	238.5	304.2	229.5	4	257.9	3
MFC-8-14 (ZC-SZ)	268.7	225.0	210.4	194.4	245.9	291.7	239.4	3		
Mean	260.6	191.4	205.3	226.6	242.6	290.2	236.1		253.4	
CD at 5%	23.3	6.7	20.5	41.6	1.9	19.6				
CV%	5.8	2.3	13.0	11.8	5.1	4.4				

Table 10.2: AVTC-1: First Advanced Varietal Trial in Cowpea: Dry Matter Yield (q/ha)

Turkui oa		-	-	North Ea	ast Zone				
Entries	Ayodhya	Bhubaneswar	Ranchi	Jorhat	Imphal	Pusa	**Kalyani	Average	Rank
HFC17-9	91.1	84.1	42.1	52.9	39.7	57.0	19.8	61.2	3
MFC-16-8	110.9	73.9	36.0	23.6	32.2	67.4	11.8	57.3	4
UPC-5286 (NC)	104.8	92.1	43.7	48.2	47.8	64.2	17.8	66.8	1
Bundel Lobia-1 (NC)	90.8	76.2	34.4	51.5	44.6	69.8	18.3	61.2	3
UPC-628 (ZC-NEZ)	85.6	93.2	48.7	47.2	56.1	66.3	19.1	66.2	2
Mean	96.6	83.9	41.0	44.7	44.1	64.9	17.4	62.5	
CD at 5%	20.3	5.8	NS	3.2	9.3	3.3	0.8		
CV%	7.8	4.5	4.6	11.9	11.8	7.4	5.2		

Note: ** Data is not included in zonal and all India average due to low yield of data

Table 10.2: AVTC-1: First Advanced Varietal Trial in Cowpea: Dry Matter Yield (q/ha)

Entwice			Ŝ	outh Zone	\ 1			All India	
Entries	Coimbatore	Vellayani	Mandya	Hyderabad	Dharwad	Average	Rank	Average	Rank
HFC17-9	58.7	50.0	40.5	44.4	60.1	50.7	2	56.4	2
MFC-16-8	44.9	43.0	24.7	56.1	56.0	44.9	5	51.7	4
UPC-5286 (NC)	51.4	49.0	45.2	47.4	62.4	51.1	1	59.7	1
Bundel Lobia-1 (NC)	51.7	41.0	30.2	46.7	62.3	46.4	4	54.5	3
MFC-8-14 (ZC-SZ)	49.0	56.0	33.5	40.7	66.5	49.1	3		
Mean	51.1	47.8	34.8	47.1	61.4	48.5		55.6	
CD at 5%	4.5	3.9	2.6	NS	5.5				
CV%	5.7	5.3	9.5	14.3	5.9				

Table 10.3: AVTC-1: First Advanced Varietal Trial in Cowpea: Green Forage Yield (q/ha/day)

Entries	Ayod-	Bhuban-	Ran-	Jor-	Kal-	Pu-	Coimb-	Vella-	Man-	Hydera-	Dhar-	Aver-	Ra-
Entries	hya	eswar	chi	hat	yani	sa	atore	yani	dya	bad	wad	age	nk
HFC17-9	4.88	5.41	3.12	5.01	2.64	2.74	5.04	4.40	4.49	3.95	4.76	4.22	2
MFC-16-8	5.37	4.64	3.50	2.04	2.54	3.27	4.58	3.80	2.76	4.25	4.32	3.73	4
UPC-5286 (NC)	5.35	5.54	3.66	4.04	2.51	3.12	4.72	4.30	4.49	4.79	5.17	4.34	1
Bundel Lobia-1 (NC)	4.77	4.77	2.91	4.93	2.70	3.39	4.87	3.70	3.31	3.97	5.07	4.03	3
UPC-628 (ZC-NEZ)	4.41	5.59	3.82	4.28	2.80	3.08							
MFC-8-14 (ZC-SZ)							5.07	4.90	3.92	4.12	4.86		
Mean	4.96	5.19	3.40	4.06	2.64	3.12	4.86	4.22	3.79	4.22	4.84	4.08	

Table 10.4: AVTC-1: First Advanced Varietal Trial in Cowpea: Dry Matter Yield (q/ha/day)

Entries	Bhuban-	Ran-	Jor-	Kal-	Pu-	Coimb-	Vella-	Man-	Hydera-	Dhar-	Aver-	Ra-
Entries	eswar	chi	hat	yani	sa	atore	yani	dya	bad	wad	age	nk
HFC17-9	1.32	0.68	0.81	0.28	0.65	1.03	1.10	0.77	0.83	1.00	0.85	2
MFC-16-8	1.15	0.73	0.36	0.17	0.79	0.90	0.95	0.45	0.92	0.93	0.74	4
UPC-5286 (NC)	1.39	0.76	0.69	0.25	0.76	0.92	1.10	0.82	0.96	1.04	0.87	1
Bundel Lobia-1 (NC)	1.16	0.61	0.83	0.26	0.82	1.00	0.90	0.55	0.79	1.04	0.80	3
UPC-628 (ZC-NEZ)	1.38	0.81	0.70	0.27	0.76							
MFC-8-14 (ZC-SZ)						0.93	1.20	0.62	0.86	1.11		
Mean	1.28	0.72	0.68	0.25	0.76	0.95	1.05	0.64	0.87	1.02	0.81	

Table 10.5: AVTC-1: First Advanced Varietal Trial in Cowpea: Crude Protein Yield (q/ha)

			Noi	rth East	Zone	_					South Zo	one			All In	dia
Entries	Ayod-	Bhuban-	Ran-	Jor-	Kal-	Imp-	Aver-	Ra-	Coimb-	Man-	Hydera-	Vella-	Aver-	Ra-	Aver-	Ra-
	hya	eswar	chi	hat	yani	hal	age	nk	atore	dya	bad	yani	age	nk	age	nk
HFC17-9	12.7	12.4	6.5	6.9	2.8	5.5	7.8	3	11.8	8.0	9.1	11.4	10.1	1	8.7	1
MFC-16-8	14.3	10.9	5.7	3.2	1.6	4.6	6.7	5	7.8	4.4	10.2	8.5	7.7	4	7.1	3
UPC-5286 (NC)	14.3	13.1	7.0	6.5	2.9	7.3	8.5	1	9.5	9.1	8.9	8.6	9.0	2	8.7	1
Bundel Lobia-1 (NC)	12.1	11.7	5.3	7.0	2.3	6.7	7.5	4	8.2	5.6	8.0	5.9	6.9	5	7.3	2
UPC-628 (ZC-NEZ)	11.8	13.4	7.0	6.5	2.5	7.9	8.2	2								
MFC-8-14 (ZC-SZ)									9.5	6.3	8.2	10.8	8.7	3		
Mean	13.0	12.3	6.3	6.0	2.4	6.4	7.7		9.3	6.7	8.9	9.0	8.5		8.0	

Table 10.6: AVTC-1: First Advanced Varietal Trial in Cowpea: Crude Protein (%)

			N	orth Ea	st Zone						South Zo	one			All In	ndia
Entries	Ayod-	Bhuban-	Ran-	Jor-	Kal-	Imp-	Aver-	Ra-	Coimb-	Man-	Hydera-	Vella-	Aver-	Ra-	Aver-	Ra-
	hya	eswar	chi	hat	yani	hal	age	nk	atore	dya	bad	yani	age	nk	age	nk
HFC17-9	16.9	14.7	15.4	13.2	14.3	13.9	14.7	3	20.1	20.1	19.8	22.7	20.7	1	17.1	1
MFC-16-8	16.8	14.7	15.9	13.9	13.4	14.3	14.8	2	17.5	17.3	18.4	19.7	18.2	4	16.2	3
UPC-5286 (NC)	17.2	14.2	15.9	13.6	16.1	15.3	15.4	1	18.4	20.0	19.0	17.5	18.7	3	16.7	2
Bundel Lobia-1 (NC)	16.4	15.4	15.4	13.9	12.6	15.1	14.8	2	15.8	19.3	16.4	14.4	16.5	5	15.5	4
UPC-628 (ZC-NEZ)	16.5	14.4	14.4	13.5	13.3	14.1	14.4	4								
MFC-8-14 (ZC-SZ)									19.3	19.1	19.6	19.3	19.3	2		
Mean	16.8	14.7	15.4	13.6	13.9	14.5	14.8		18.2	19.1	18.6	18.7	18.7		16.4	

Table 10.7: AVTC-1: First Advanced Varietal Trial in Cowpea: Plant Height (cm)

								0 \						
Entries	Ayod- hva	Bhuban- eswar	Ran- chi	Jor- hat	Kal- vani	Imp- hal	Pu- sa	Coimb- atore	Vella- yani	Man- dva	Hydera- bad	Rai- chur	Aver- age	Ra- nk
								l .						
HFC17-9	119.4	218.1	129.1	104.4	94.2	178.5	138.7	127.5	24.0	84.8	82.2	133.7	119.5	4
MFC-16-8	127.8	195.7	141.6	98.1	107.3	147.7	156.3	117.5	21.0	65.0	118.4	154.7	120.9	3
UPC-5286 (NC)	103.7	224.7	123.2	99.4	100.1	224.3	142.5	115.5	23.0	87.3	104.2	151.1	124.9	1
Bundel Lobia-1 (NC)	114.6	204.6	121.4	106.2	104.2	185.9	161.2	125.0	20.0	64.6	102.3	145.1	121.3	2
UPC-628 (ZC-NEZ)	129.8	231.5	129.1	105.5	104.3	219.2	144.8							
MFC-8-14 (ZC-SZ)								132.5	27.0	79.9	92.7	144.8		
Mean	119.1	214.9	128.9	102.7	102.0	191.1	148.7	123.6	23.0	76.3	100.0	145.8	121.7	

Table 10.8: AVTC-1: First Advanced Varietal Trial in Cowpea: Leaf Stem Ratio

Entries	Ayod- hya	Bhuban- eswar	Ran- chi	Jor- hat	Kal- yani	Imp- hal	Pu- sa	Coimb- atore	Vella- yani	Man- dya	Hydera- bad	Aver- age	Ra- nk
HFC17-9	0.55	1.17	0.91	0.81	0.86	0.52	0.47	0.62	1.30	0.68	0.95	0.80	1
MFC-16-8	0.57	0.94	0.72	0.75	0.77	0.47	0.57	0.45	1.10	0.59	0.39	0.67	4
UPC-5286 (NC)	0.60	1.31	0.88	0.81	0.84	0.46	0.53	0.55	1.20	0.71	0.82	0.79	2
Bundel Lobia-1 (NC)	0.63	1.08	0.91	0.76	0.89	0.70	0.45	0.57	1.10	0.63	0.84	0.78	3
UPC-628 (ZC-NEZ)	0.62	1.24	0.75	0.69	0.76	0.43	0.51						
MFC-8-14 (ZC-SZ)								0.53	1.40	0.70	0.76		
Mean	0.59	1.15	0.83	0.76	0.82	0.52	0.51	0.54	1.22	0.66	0.75	0.76	

Table 10.9: AVTC-1: First Advanced Varietal Trial in Cowpea: ADF (%), NDF (%) & IVDMD (%)

Entries		ADF (%)		NDF (%)		IVDMD (%)
Entries	Ranchi	Rank	Ranchi	Rank	Ranchi	Rank
HFC17-9	35.3	4	56.9	2	62.3	4
MFC-16-8	34.3	2	57.3	3	63.2	3
UPC-5286 (NC)	34.4	3	58.2	4	63.5	2
Bundel Lobia-1 (NC)	32.0	1	55.3	1	65.4	1
UPC-628 (ZC-NEZ)	40.7	5	61.2	5	58.6	5
Mean	35.3		57.8		62.6	

11. IVTRB: INITIAL VARIETAL TRIAL IN FORAGE RICE BEAN

(Reference Tables: 11.1 to 11.8)

In Forage Rice Bean, four entries along with two national checks *i.e.* Bidhan-3 and Bidhan-2 were evaluated in Initial Varietal Trial conducted at 10 locations across the country.

For green and dry forage yield (q/ha), entry JRBJ 12-9 ranked first showing superiority of 12.3 % for GFY and 12.4% for DMY as compared to best check. It was followed by entry JOR-21-1 showing superiority of 2.9 % for GFY and 3.0 % for DMY as compared to best check

For green fodder per day productivity (q/ha/day), entry JOR-21-1 and JRBJ-12-9 (3.54q /ha/day) ranked first. For dry fodder per day productivity (q/ha/day), entry JRBJ-12-9 (0.74q /ha/day) ranked first.

For plant height, entry BRB1-L13P5 ranked first (159.3 cm) followed by entry JRBJ-12-9 (154.8 cm) as compared to best check (151.0 cm). For leafiness, entries JRBJ-12-9 ranked first with value 0.92 followed closely by national check Bidhan-2 with a value of 0.89.

For crude protein yield, entry JRBJ-12-9 ranked first (9.9 q/ha) followed by entry BRB1-L13P5 (8.7q/ha), JOR-21-1 (8.6 q/ha) as compared to best check Bidhan -2 (8.4 q/ha). For crude protein %, entry BRB1-L13P5 was best (16.2%), followed by entry JRBJ-12-9 (15.9%), JOR-21-1 (15.6%) as compared to best check Bidhan -2 (14.9%).

Table 11.1 IVT (Rice bean): Initial Varietal Trial in Rice bean: Green Forage Yield (q/ha)

Entries	Kal-	Ran-	Bhuban-	Jor-	Pu-	Vella-	Jabal-	Rai-	Imp-	Kar-	Aver-	Ra-	Super-
Entries	yani	chi	eswar	hat	sa	yani	pur	pur	hal	jat	age	nk	iority%
BRB1-L13P5	327.4	389.6	297.9	380.3	230.0	177.0	302.0	222.2	201.0	225.3	275.3	5	
JOR-21-1	246.5	319.3	392.7	278.9	245.7	278.0	421.8	232.6	236.3	214.6	286.6	2	2.9
JRBJ-12-9	215.4	385.9	337.5	367.5	235.4	233.0	453.1	269.1	377.4	253.8	312.8	1	12.3
JOR-21-2	205.7	345.3	271.8	261.8	220.1	212.0	244.8	184.0	224.6	186.7	235.7	6	
Bidhan-2 (NC)	254.2	414.6	277.0	306.9	210.2	274.0	296.8	263.9	259.9	227.0	278.5	3	
Bidhan-3 (NC)	200.8	392.2	314.5	322.0	215.5	243.0	432.2	270.1	217.5	158.6	276.6	4	
Mean	241.7	374.5	315.2	319.6	226.2	236.2	358.5	240.3	252.8	211.0	277.6		
CD at 5%	19.3	29.0	28.0	3.2	11.5	6.4	1.3	19.7	17.9	27.5			
CV%	9.3	5.2	5.9	4.8	8.4	1.8	14.6	5.4	4.1	8.5			

Table 11.2 IVT (Rice bean): Initial Varietal Trial in Rice bean: Dry Matter Yield (q/ha)

Entries	Kal-	Ran-	Bhuban-	Jor-	Pu-	Vella-	Jabal-	Rai-	Imp-	Kar-	Aver-	Ra-	Superi-
Entries	yani	chi	eswar	hat	sa	yani	pur	pur	hal	jat	age	nk	ority%
BRB1-L13P5	48.5	45.1	75.6	72.8	48.4	44.0	58.5	46.0	31.4	46.1	51.6	5	
JOR-21-1	29.9	40.2	97.6	52.3	58.3	69.0	87.7	46.6	36.0	47.4	56.5	2	3.0
JRBJ-12-9	27.0	40.3	83.8	73.0	55.1	58.0	87.1	62.4	64.3	65.5	61.7	1	12.4
JOR-21-2	24.6	40.0	68.3	49.8	50.2	53.0	48.1	41.5	43.6	63.5	48.3	6	
Bidhan-2 (NC)	31.0	46.0	71.4	59.6	45.2	69.0	60.4	60.4	45.8	48.9	53.8	4	
Bidhan-3 (NC)	25.5	49.2	80.7	64.1	49.4	61.0	84.7	58.9	37.3	37.6	54.8	3	
Mean	31.1	43.5	79.6	61.9	51.1	59.0	71.1	52.6	43.1	51.5	54.4		
CD at 5%	2.6	9.9	7.3	3.7	4.6	4.5	0.3	6.1	7.0	7.0			
CV%	6.8	6.5	6.1	12.7	8.4	5.1	14.8	7.7	9.3	9.5			

Table 11.3 IVT (Rice bean): Initial Varietal Trial in Rice bean: Green Forage Yield (q/ha/day)

Entries	Kalyani	Ranchi	Bhubaneswar	Jorhat	Pusa	Vellayani	Raipur	Karjat	Average	Rank
BRB1-L13P5	4.20	4.17	3.35	4.70	2.83	3.90	1.78	2.85	3.47	3
JOR-21-1	3.16	3.34	4.27	3.44	3.06	6.20	2.15	2.68	3.54	1
JRBJ-12-9	2.76	3.95	3.59	4.54	2.87	5.10	2.22	3.33	3.54	1
JOR-21-2	2.64	4.15	3.24	3.23	2.70	4.70	1.88	2.49	3.13	5
Bidhan-2 (NC)	3.26	4.19	3.18	3.79	2.71	6.00	1.91	2.94	3.50	2
Bidhan-3 (NC)	2.57	4.33	3.50	3.98	2.58	5.40	1.93	1.96	3.28	4
Mean	3.10	4.02	3.52	3.95	2.79	5.22	1.98	2.71	3.41	

Table 11.4 IVT (Rice bean): Initial Varietal Trial in Rice bean: Dry Matter Yield (q/ha/day)

Entries	Kalyani	Ranchi	Bhubaneswar	Jorhat	Pusa	Vellayani	Raipur	Karjat	Average	Rank
BRB1-L13P5	0.62	0.48	0.85	0.90	0.60	0.98	0.37	0.58	0.67	4
JOR-21-1	0.38	0.42	1.06	0.65	0.73	1.50	0.43	0.59	0.72	2
JRBJ-12-9	0.35	0.41	0.89	0.90	0.67	1.30	0.52	0.86	0.74	1
JOR-21-2	0.32	0.48	0.81	0.61	0.62	1.20	0.42	0.85	0.66	5
Bidhan-2 (NC)	0.40	0.46	0.82	0.74	0.58	1.50	0.44	0.63	0.70	3
Bidhan-3 (NC)	0.33	0.54	0.90	0.79	0.59	1.30	0.42	0.46	0.67	4
Mean	0.40	0.47	0.89	0.76	0.63	1.30	0.43	0.66	0.69	

Table 11.5 IVT (Rice bean): Initial Varietal Trial in Rice bean: Crude Protein Yield (q/ha)

Entries	Kalyani	Bhubaneswar	Jorhat	Jabalpur	Raipur	Imphal	Ranchi	Average	Rank
BRB1-L13P5	9.2	11.0	11.6	8.8	7.4	4.1	9.0	8.7	2
JOR-21-1	4.8	14.5	8.2	13.8	6.0	4.8	8.1	8.6	3
JRBJ-12-9	3.2	12.5	12.4	13.1	10.2	9.4	8.7	9.9	1
JOR-21-2	3.4	10.1	6.4	7.1	7.0	5.7	7.0	6.7	6
Bidhan-2 (NC)	5.1	10.2	8.2	9.1	7.3	6.0	9.1	7.9	5
Bidhan-3 (NC)	3.2	11.6	8.9	12.8	7.7	5.2	9.8	8.4	4
Mean	4.8	11.7	9.3	10.8	7.6	5.9	8.6	8.4	

AICRP on Forage Crops & Utilization

Table 11.6 IVT (Rice bean): Initial Varietal Trial in Rice bean: Crude Protein (%)

Entries	Kalyani	Bhubaneswar	Jorhat	Jabalpur	Raipur	Imphal	Ranchi	Average	Rank
BRB1-L13P5	18.9	14.6	16.0	15.0	16.1	13.1	19.9	16.2	1
JOR-21-1	16.1	14.9	15.9	15.7	12.9	13.2	20.2	15.6	3
JRBJ-12-9	11.8	14.9	17.1	15.0	16.3	14.6	21.7	15.9	2
JOR-21-2	13.6	14.7	12.3	14.8	16.9	13.1	17.6	14.7	5
Bidhan-2 (NC)	16.4	14.4	13.8	15.1	12.2	13.1	19.7	14.9	4
Bidhan-3 (NC)	12.6	14.4	14.0	15.1	13.0	13.9	19.9	14.7	5
Mean	14.9	14.6	14.8	15.1	14.6	13.5	19.8	15.3	

Table 11.7 IVT (Rice bean): Initial Varietal Trial in Rice bean: Plant Height (cm)

Entries	Kalyani	Ranchi	Bhubaneswar	Jorhat	Pusa	Vellayani	Jabalpur	Raipur	Imphal	Karjat	Average	Rank
BRB1-L13P5	140.5	135.3	165.1	175.3	133.7	74.0	173.9	174.4	142.0	279.2	159.3	1
JOR-21-1	105.0	145.3	184.6	120.7	141.2	108.0	176.1	150.6	138.1	238.8	150.8	4
JRBJ-12-9	109.0	124.0	179.5	164.6	135.0	94.0	183.8	189.3	133.8	234.9	154.8	2
JOR-21-2	99.7	142.8	154.3	118.0	132.2	80.0	129.0	144.9	136.8	167.6	130.5	6
Bidhan-2 (NC)	101.8	143.5	162.2	131.4	127.5	107.0	165.6	176.2	145.3	249.7	151.0	3
Bidhan-3 (NC)	107.2	133.9	175.4	158.2	130.0	95.0	166.1	182.2	144.6	170.7	146.3	5
Mean	110.5	137.5	170.2	144.7	133.3	93.0	165.7	169.6	140.1	223.5	148.8	

Table 11.8 IVT (Rice bean): Initial Varietal Trial in Rice bean: Leaf Stem Ratio

Entries	Kal-	Ran-	Bhuban-	Jor-	Pu-	Vella-	Imp-	Jabal-	**Rai-	**Kar-	Aver-	Ra-
Entries	yani	chi	eswar	hat	sa	yani	hal	pur	pur	jat	age	nk
BRB1-L13P5	0.77	1.68	1.09	0.76	0.46	1.20	0.42	0.71	0.27	0.45	0.89	2
JOR-21-1	0.64	1.76	1.31	0.70	0.52	0.85	0.26	0.80	0.35	0.31	0.86	4
JRBJ-12-9	0.91	1.52	1.24	0.80	0.48	1.30	0.27	0.87	0.27	0.30	0.92	1
JOR-21-2	0.76	1.97	0.98	0.74	0.42	1.10	0.25	0.68	0.38	0.27	0.86	4
Bidhan-2 (NC)	0.81	1.94	1.04	0.74	0.41	1.00	0.45	0.70	0.32	0.34	0.89	2
Bidhan-3 (NC)	0.69	1.75	1.17	0.82	0.38	1.10	0.30	0.80	0.36	0.28	0.88	3
Mean	0.76	1.77	1.14	0.76	0.45	1.09	0.33	0.76	0.33	0.33	0.88	

Note: ** Data is not included in zonal and all India average due to low yield of data

12. AVT-2 Dinanath Grass: ADVANCED VARIETAL TRIAL -2 IN FORAGE DINANATH GRASS

(Reference table: 12.1- 12.9)

Advanced Varietal Trial -2 in Forage Dinanath Grass comprising of four entries with one national check *viz.*, Bundel Dinanath-2 was conducted at 8 locations across the country.

For forage yield (q/ha), Check Bundel Dinanath-2 performed best for both green and dry matter yield. All other entries were below par over the check.

For green and dry forage production potential (q/ha/day), Check Bundel Dinanath-2 performed best for both green and dry matter yield. All other entries were below par over the check.

In growth parameters, check Bundel Dinanath-2 was best for plant height and leafiness.

In quality parameters, for crude protein yield (q/ha), check Bundel Dinanath-2 ranked first followed by JHD 19-4. For CP content, entry BAU-DN-103-18-2 ranked first with value of 8.3 % followed by BAU-DN-110-18-2 (8.1%) as compared to 7.1 % in check Bundel Dinanath-2. For other quality parameters, entry BAU-DN-109-8 ranked first for ADF, NDF and IVDMD.

13. AVT-2 Dinanath Grass (seed): ADVANCED VARIETAL TRIAL -2 IN FORAGE DINANATH GRASS (seed)

(Reference table: 13.1)

Advanced Varietal Trial -2 (seed) in Forage Dinanath Grass comprising of four entries with one national check *viz.*, Bundel Dinanath-2 was conducted at 5 locations across the country.

Entry JHD-19-4 showed superiority over the best check by a margin of 7.7% for seed yield. All other entries were below par over the best check.

Table 12.1 AVT-2: Advanced Varietal Trial in Dinanath Grass: Green Forage Yield (q/ha)

Entries	Kal-	Ran-	Bhuban-	Pu-	Jabal-	Man-	**Jor-	**Jha-	Aver-	Ra-
Entries	yani	chi	eswar	sa	pur	dya	hat	nsi	age	nk
JHD-19-4	377.5	260.9	211.5	280.0	315.0	292.7	82.1	145.6	289.6	2
BAU-DN-103-18-2	155.0	310.4	194.3	254.1	217.5	225.4	113.0	42.7	226.1	5
BAU-DN-109-8	244.1	291.9	267.3	277.2	222.5	286.4	69.0	24.3	264.9	3
BAU-DN-110-18-2	197.5	347.7	252.2	242.1	192.5	278.6	127.9	18.2	251.8	4
Bundel Dinanath-2 (NC)	348.3	334.1	282.4	268.8	365.0	302.2	82.4	36.8	316.8	1
Mean	264.5	309.0	241.5	264.4	262.5	277.0	94.9	53.5	269.8	
CD at 5%	19.7	15.0	28.7	14.8	1.4	21.6	7.5	9.9		
CV%	6.2	3.2	7.7	7.7	10.8	10.1	12.5	12.1		

Note: ** Data is not included in all India average due to low yield of data

Table 12.2 AVT-2: Advanced Varietal Trial in Dinanath Grass (New): Dry Matter Yield (q/ha)

	Kal-	Ran-	Bhuban-	Pu-	Jabal-	Man-	**Jor-	**Jha-	Aver-	Ra-
Entries	yani	chi	eswar	sa	pur	dya	hat	nsi	age	nk
JHD-19-4	56.6	50.1	51.1	68.4	63.0	62.1	14.3	48.6	58.6	3
BAU-DN-103-18-2	34.4	69.3	47.3	61.0	42.1	47.3	20.5	22.2	50.2	5
BAU-DN-109-8	52.7	62.7	64.9	66.2	42.5	64.9	11.8	12.7	59.0	2
BAU-DN-110-18-2	34.3	70.5	61.0	60.4	39.7	64.5	18.8	8.6	55.1	4
Bundel Dinanath-2 (NC)	78.0	72.2	68.6	58.2	77.0	71.9	12.4	17.3	71.0	1
Mean	51.2	65.0	58.6	62.8	52.9	62.1	15.6	21.9	58.8	
CD at 5%	14.4	3.1	7.3	3.7	0.3	5.7	2.7	6.6		
CV%	7.4	4.4	8.1	8.2	10.5	11.8	18.7	18.4		

Table 12.3 AVT-2: Advanced Varietal Trial in Dinanath Grass (New): Green Forage Yield (q/ha/day)

Entries	Kalyani	Ranchi	Bhubaneswar	Pusa	Mandya	**Jorhat	**Jhansi	Average	Rank
JHD-19-4	3.67	2.29	3.36	2.23	4.17	1.37	0.92	3.14	2
BAU-DN-103-18-2	1.50	3.05	2.86	2.11	3.25	1.88	0.27	2.55	5
BAU-DN-109-8	2.37	2.53	3.47	2.16	3.91	1.15	0.16	2.89	3
BAU-DN-110-18-2	1.92	3.33	3.45	1.86	3.80	2.13	0.12	2.87	4
Bundel Dinanath-2 (NC)	3.38	3.23	3.44	2.33	4.24	1.37	0.23	3.32	1
Mean	2.57	2.88	3.32	2.14	3.87	1.58	0.34	2.96	

Table 12.4 AVT-2: Advanced Varietal Trial in Dinanath Grass (New): Dry Matter Yield (q/ha/day)

Entries	Kalyani	Ranchi	Bhubaneswar	Jorhat	Pusa	Mandya	Average	Rank
JHD-19-4	0.55	0.44	0.81	0.24	0.54	0.88	0.58	2
BAU-DN-103-18-2	0.33	0.68	0.70	0.34	0.51	0.68	0.54	3
BAU-DN-109-8	0.51	0.54	0.84	0.20	0.52	0.86	0.58	2
BAU-DN-110-18-2	0.33	0.67	0.84	0.31	0.46	0.88	0.58	2
Bundel Dinanath-2 (NC)	0.76	0.70	0.84	0.21	0.50	1.01	0.67	1
Mean	0.50	0.61	0.80	0.26	0.51	0.86	0.59	

Table 12.5 AVT-2: Advanced Varietal Trial in Dinanath Grass (New): Crude Protein Yield (q/ha)

Entries	Kalyani	Bhubaneswar	Jorhat	Jabalpur	Mandya	Average	Rank
JHD-19-4	6.2	3.9	0.8	4.9	3.3	3.8	2
BAU-DN-103-18-2	4.1	3.6	1.4	3.2	2.8	3.0	4
BAU-DN-109-8	5.0	4.9	0.6	3.2	3.6	3.5	3
BAU-DN-110-18-2	4.2	4.7	1.2	2.8	4.4	3.5	3
Bundel Dinanath-2 (NC)	7.9	5.2	0.6	6.0	4.1	4.8	1
Mean	5.5	4.5	0.9	4.0	3.6	3.7	

Table 12.6 AVT-2: Advanced Varietal Trial in Dinanath Grass (New): Crude Protein (%)

Entries	Kalyani	Bhubaneswar	Jorhat	Jabalpur	Ranchi	Mandya	Average	Rank
JHD-19-4	10.9	7.7	5.7	7.7	8.3	5.4	7.6	3
BAU-DN-103-18-2	11.9	7.7	6.7	7.6	10.1	6.0	8.3	1
BAU-DN-109-8	9.6	7.6	5.3	7.6	7.1	5.5	7.1	4
BAU-DN-110-18-2	12.4	7.7	6.6	7.2	7.8	6.8	8.1	2
Bundel Dinanath-2 (NC)	10.2	7.6	5.4	7.8	6.0	5.7	7.1	4
Mean	11.0	7.6	5.9	7.6	7.9	5.9	7.6	

Table 12.7 AVT-2: Advanced Varietal Trial in Dinanath Grass (New): Plant Height (cm)

Entries	Kal-	Ran-	Bhuban-	Jor-	Pu-	Jabal-	Jha-	Man-	Aver-	Ra-
Entries	yani	chi	eswar	hat	sa	pur	nsi	dya	age	nk
JHD-19-4	175.4	147.5	62.3	34.4	185.0	147.4	117.5	84.5	119.2	2
BAU-DN-103-18-2	189.4	145.8	55.0	48.8	181.2	116.0	103.0	78.7	114.7	4
BAU-DN-109-8	183.5	115.1	80.3	33.8	175.0	122.5	113.4	93.1	114.6	5
BAU-DN-110-18-2	183.6	144.9	75.5	40.7	177.5	107.4	97.8	93.6	115.1	3
Bundel Dinanath-2 (NC)	195.4	153.9	94.5	55.1	188.3	156.6	125.2	97.9	133.4	1
Mean	185.5	141.4	73.5	42.5	181.4	130.0	111.4	89.5	119.4	

Table 12.8 AVT-2: Advanced Varietal Trial in Dinanath Grass (New): Leaf Stem Ratio

Entries	Kalyani	Ranchi	Bhubaneswar	Jorhat	Pusa	Jabalpur	Mandya	Average	Rank
JHD-19-4	0.54	0.60	0.77	0.75	0.63	0.89	0.23	0.63	2
BAU-DN-103-18-2	0.63	0.54	0.73	0.67	0.61	0.80	0.18	0.59	3
BAU-DN-109-8	0.47	0.38	0.88	0.66	0.62	0.85	0.22	0.58	4
BAU-DN-110-18-2	0.61	0.48	0.84	0.60	0.58	0.69	0.21	0.57	5
Bundel Dinanath-2 (NC)	0.59	0.49	0.92	0.64	0.60	1.10	0.24	0.65	1
Mean	0.57	0.50	0.83	0.66	0.61	0.87	0.22	0.61	

Table 12.9 AVT-2: Advanced Varietal Trial in Dinanath Grass (New): ADF (%), NDF (%) & IVDMD (%)

Entries	ADF	(%)	NDF	(%)	IVDMD (%)		
Entries	Ranchi	Rank	Ranchi	Rank	Ranchi	Rank	
JHD-19-4	52.6	4	73.2	5	47.4	4	
BAU-DN-103-18-2	49.6	3	70.1	3	49.8	3	
BAU-DN-109-8	43.6	1	68.3	1	54.5	1	
BAU-DN-110-18-2	49.6	3	69.3	2	49.8	3	
Bundel Dinanath-2 (NC)	47.3	2	71.3	4	51.6	2	
Mean	48.5		70.4		50.6		

Table 13.1 AVT-2: Advanced Varietal Trial in Dinanath Grass (Seed): Seed Yield (q/ha)

Entries	Ranchi	Pusa	Jabalpur	Jhansi	Mandya	Average	Rank	Superiority%
JHD-19-4	5.5	7.6	12.4	25.4	5.5	11.3	1	7.7
BAU-DN-103-18-2	7.9	6.2	10.0	15.0	3.6	8.5	4	
BAU-DN-109-8	8.6	6.5	9.5	14.1	4.2	8.6	3	
BAU-DN-110-18-2	8.9	4.8	7.3	12.4	3.7	7.4	5	
Bundel Dinanath-2 (NC)	9.6	5.8	12.3	18.5	6.2	10.5	2	
Mean	8.1	6.2	10.3	17.1	4.6	9.3		
CD at 5%	0.7	0.6	0.1	3.8	0.4			
CV%	5.8	11.2	13.9	11.7	10.7			

14. VT Cenchrus ciliaris-2019 (New): VARIETAL TRIAL IN Cenchrus ciliaris (PERENNIAL) – 3^{rd} year

(Reference Tables: 14.1 to 14.9)

The trial was established in 2019 with 6 entries along with 3 checks (CAZRI-75, IGFRI 3108, and IGFRI-67-365) in three zones.

As 3 years have been completed, the entries are now decoded. The performance in third year is as follows.

National check IGFRI-67-365 performed best for green fodder yield in all zones and also at all India level. For dry matter yield, entry IG-96-414 was superior over the best check by a margin of 14.1% in NWZ, similarly in SZ, entry RCCB-05 was superior by a margin of 8.4% over the best check. In CZ and at all India level, the national check IG -67-365 was best.

For crude protein yield, check IGFRI-67-365 was best whereas for crude protein content, entry RCCB-06 was best (7.9%) followed by RCC-2016-8 (7.6%) and national check IGFRI-67-365 (7.4%). For ADF, national check CAZRI-75 was best whereas entry RCCB-06 performed best for NDF and IVDMD followed by national check CAZRI-75.

For plant height national check IGFRI-67-365 ranked first whereas for leafiness, national check CAZRI 75 was best.

15. VT Cenchrus setigerus -2019 (New): VARIETAL TRIAL IN Cenchrus setigerus (PERENNIAL) – 3^{rd} year

(Reference Tables: 15.1 to 15.8)

The trial was established in 2019 with four entries and three national checks (CAZRI 76, TNCS-265 and IG-96-706) at 12 locations across the country. As 3 years have been completed, the entries are now decoded. The performance in third year is as follows.

For green fodder yield (q/ha) and dry matter yield (q/ha), national checks performed best in all zones and at national level. National check TNCS-265 in NWZ, IG-96-706 in south zone and CAZRI-76 in CZ and at all India level were top ranked.

For production potential, national check CAZRI-76 ranked first. For plant height national check CAZRI-76 ranked first (74.1cm) followed by entry IG-97-447 (73.5 cm). For leafiness, national check IG-96-706 was top ranked (1.05) followed by national check CAZRI-76 (1.03).

For crude protein content (CP %), entry RCSB-08ranked first (7.4%) followed by entry IG-97-447 (7.2%) and entry RCSB-09 (7.0%) and national check CAZRI -76 (6.9%). For crude protein yield (q/ha), national check TNCS-265 ranked first (5.9q).

Table 14.1 VT Cenchrus ciliaris-2019 (3rd Year): Varietal Trial in *Cenchrus Ciliaris* (Perennial): Green Forage Yield (q/ha)

			North W	est Zone					-	Central	Zone			
Entries	Ludh-	Bika-	Avika-	**Jodh-	Aver-	Ra-	Ana-	Rah-	Urulikan-	Jha-	Jabal-	**Rai-	Aver-	Ra-
	iana	ner	nagar	pur	age	nk	nd	uri	chan	nsi	pur	pur	age	nk
RCCB-06	318.6	179.5	53.5	23.2	183.9	8	262.5	296.6	601.2	325.0	214.3		339.9	8
RCC-2016-8	481.7	243.9	91.5	11.9	272.4	4	348.1	483.9	556.5	311.7	217.7	282.5	383.6	4
IG-67-1263	315.4	239.8	84.4	19.3	213.2	7	242.2	306.8	400.8	928.3	220.0		419.6	2
CAZRI-327	285.4	176.8	80.8	15.6	181.0	9	186.4	326.8	737.9	411.7	223.3	147.1	377.2	6
RCCB-05	340.1	219.9	104.7	20.7	221.6	6	163.1	299.9	667.5	378.3	221.4		346.0	7
IG-96-414	415.6	276.7	162.1	17.5	284.8	2	151.7	231.4	489.4	325.0	249.7	161.4	289.4	9
IGFRI-67-365 (NC)	488.9	250.7	121.9	11.7	287.2	1	323.1	508.5	830.8	255.7	209.0	326.1	425.4	1
CAZRI 75 (NC)	455.7	235.6	140.3	7.6	277.2	3	328.9	402.0	716.4	375.0	188.3	209.6	402.1	3
IGFRI 3108 (NC)	375	239.6	131.6	8.0	248.7	5	303.3	408.1	585.8	415.0	198.3	245.6	382.1	5
Mean	386.3	229.2	107.9	15.1	241.1		256.6	362.7	620.7	414.0	215.8	228.7	373.9	
CD at 5%	28.4	52.3	2.7	6.2			70.4	59.8	104.0	2.1	2.4	27.1		
CV%	12.8	13.1	12.0	23.7			15.8	9.4	9.6	2.7	13.7	10.3		

Note: ** Data is not included in zonal and all India average due to low yield of data

Table 14.1 VT Cenchrus ciliaris-2019 (3rd Year): Varietal Trial in *Cenchrus Ciliaris* (Perennial): Green Forage Yield (q/ha)

Entries		South Zon	e		All Inc	lia
Entries	Coimbatore	Mandya	Average	Rank	Average	Rank
RCCB-06	326.4	232.6	279.5	9	281.0	9
RCC-2016-8	450.0	408.4	429.2	3	359.3	2
IG-67-1263	354.7	372.9	363.8	4	346.5	4
CAZRI-327	315.3	410.8	363.0	5	315.5	7
RCCB-05	437.5	422.7	430.1	2	325.5	6
IG-96-414	352.8		352.8	7	294.9	8
IGFRI-67-365 (NC)	472.2	391.4	431.8	1	385.2	1
CAZRI 75 (NC)	438.9	235.5	337.2	8	351.7	3
IGFRI 3108 (NC)	311.1	410.4	360.7	6	337.8	5
Mean	384.3	360.6	372.0		333.1	
CD at 5%	29.5	26.5				
CV%	4.5	11.2				

Table 14.2 VT Cenchrus ciliaris-2019 (3rd Year): Varietal Trial in *Cenchrus Ciliaris* (Perennial): Dry Matter Yield (q/ha)

			No	orth West Z	Zone			Ì		•	Centra	al Zone			
Entries	Ludh-	Bika-	Avika-	**Jodh-	Aver-	Ra-	Superi-	Ana-	Rah-	Urulikan-	Jha-	**Jabal-	**Rai-	Aver-	Ra-
	iana	ner	nagar	pur	age	nk	ority (%)	nd	uri	chan	nsi	pur	pur	age	nk
RCCB-06	49.1	63.0	13.7	5.8	41.9	9		83.5	87.7	132.0	81.3	39.4		96.1	7
RCC-2016-8	75.6	75.5	28.9	3.9	60.0	3		115.0	155.8	139.6	77.9	39.3	77.0	122.1	3
IG-67-1263	48.6	75.4	24.0	6.4	49.3	7		72.5	96.3	79.8	232.1	39.6		120.2	4
CAZRI-327	44.0	58.0	25.0	4.9	42.3	8		58.4	107.5	147.7	102.9	40.2	34.6	104.1	6
RCCB-05	52.4	71.5	27.2	5.9	50.4	6		48.9	88.4	131.9	94.6	40.2		90.9	8
IG-96-414	64.0	99.1	45.7	5.1	69.6	1	14.1	47.2	75.9	124.7	81.3	46.4	39.0	82.3	9
IGFRI-67-365 (NC)	75.3	74.5	33.2	3.1	61.0	2		101.2	163.0	196.9	63.9	38.6	95.0	131.2	1
CAZRI 75 (NC)	70.2	63.8	37.0	2.2	57.0	5		97.0	136.0	163.8	93.8	33.2	68.0	122.6	2
IGFRI 3108 (NC)	57.8	78.8	38.1	2.6	58.2	4		90.7	133.5	137.7	103.8	34.8	78.3	116.4	5
Mean	59.7	73.3	30.3	4.4	54.4			79.4	116.0	139.4	103.5	39.1	65.3	109.6	
CD at 5%	9.2	16.8	0.7	2.3				22.8	19.3	23.5	5.3	0.4	10.8		
CV%	10.4	13.2	11.7	30.6				16.6	9.5	9.7	2.7	13.8	14.3		

Note: ** Data is not included in zonal and all India average due to low yield of data

Table 14.2 VT Cenchrus ciliaris-2019 (3rd Year): Varietal Trial in *Cenchrus Ciliaris* (Perennial): Dry Matter Yield (q/ha)

Entwice		S	outh Zone			All I	ndia
Entries	Coimbatore	Mandya	Average	Rank	Superiority (%)	Average	Rank
RCCB-06	69.1	54.4	61.7	8		70.4	9
RCC-2016-8	100.0	76.5	88.2	3		93.9	2
IG-67-1263	79.5	92.7	86.1	4		89.0	5
CAZRI-327	68.5	51.9	60.2	9		73.8	8
RCCB-05	95.9	104.7	100.3	1	8.4	79.5	6
IG-96-414	73.9		73.9	6		76.5	7
IGFRI-67-365 (NC)	104.0	81.0	92.5	2		99.2	1
CAZRI 75 (NC)	92.5	54.0	73.2	7		89.8	3
IGFRI 3108 (NC)	68.5	93.1	80.8	5		89.1	4
Mean	83.5	76.0	79.7			84.6	
CD at 5%	6.2	4.2					
CV%	4.3	8.5					

AICRP on Forage Crops & Utilization

Annual Report Kharif-2021

Table 14.3 VT Cenchrus ciliaris-2019 (3rd Year): Varietal Trial in *Cenchrus Ciliaris* (Perennial): Green Forage Yield (q/ha/day)

Entries	Ludhiana	Bikaner	Avikanagar	Anand	Jhansi	Coimbatore	**Raipur	Average	Rank
RCCB-06	1.77	2.00	1.14	0.69	3.10	0.91		1.60	9
RCC-2016-8	2.68	2.71	1.48	0.91	3.01	1.25	2.19	2.01	5
IG-67-1263	1.75	2.66	1.78	0.63	8.85	0.99		2.78	1
CAZRI-327	1.59	1.96	1.65	0.49	3.94	0.88	1.14	1.75	8
RCCB-05	1.89	2.44	2.36	0.43	3.57	1.22		1.98	7
IG-96-414	2.31	3.07	3.21	0.40	3.06	0.98	1.25	2.17	3
IGFRI-67-365 (NC)	2.72	2.79	1.94	0.84	2.31	1.31	2.53	1.99	6
CAZRI 75 (NC)	2.53	2.62	2.69	0.86	3.36	1.22	1.62	2.21	2
IGFRI 3108 (NC)	2.08	2.66	2.53	0.79	4.04	0.86	1.9	2.16	4
Mean	2.15	2.55	2.09	0.67	3.92	1.07	1.77	2.07	

Table 14.4 VT Cenchrus ciliaris-2019 (3rd Year): Varietal Trial in *Cenchrus Ciliaris* (Perennial): Dry Matter Yield (q/ha/day)

		() -			((-1.		
Entries	Ludhiana	Bikaner	Avikanagar	Anand	Jhansi	Coimbatore	**Raipur	Average	Rank
RCCB-06	0.27	0.70	0.29	0.22	0.78	0.19		0.41	9
RCC-2016-8	0.42	0.84	0.47	0.30	0.75	0.28	0.60	0.51	5
IG-67-1263	0.27	0.84	0.51	0.19	2.21	0.22		0.71	1
CAZRI-327	0.24	0.64	0.51	0.15	0.99	0.19	0.27	0.45	8
RCCB-05	0.29	0.80	0.61	0.13	0.89	0.27		0.50	6
IG-96-414	0.36	1.10	0.90	0.12	0.77	0.21	0.30	0.58	2
IGFRI-67-365 (NC)	0.42	0.83	0.53	0.26	0.58	0.29	0.74	0.49	7
CAZRI 75 (NC)	0.39	0.71	0.71	0.25	0.84	0.26	0.53	0.53	4
IGFRI 3108 (NC)	0.32	0.88	0.73	0.24	1.01	0.19	0.61	0.56	3
Mean	0.33	0.82	0.58	0.21	0.98	0.23	0.51	0.53	

Table 14.5 VT Cenchrus ciliaris-2019 (3rd Year): Varietal Trial in *Cenchrus Ciliaris* (Perennial): Crude Protein Yield (q/ha)

Entries	Ludhiana	Bikaner	Anand	Rahuri	Urulikanchan	Jabalpur	Coimbatore	Avikanagar	**Raipur	Average	Rank
RCCB-06	3.1	6.7	5.9	6.8	11.6	2.8	5.1	1.0		5.4	6
RCC-2016-8	4.7	6.7	8.4	13.3	10.5	2.8	6.6	2.1	4.0	6.9	2
IG-67-1263	3.2	5.0	4.7	7.7	6.9	2.8	5.6	1.4		4.7	9
CAZRI-327	2.9	4.1	4.1	8.9	12.0	3.1	3.6	1.6	2.4	5.0	8
RCCB-05	3.3	7.2	3.0	7.4	11.3	3.2	5.1	1.5		5.2	7
IG-96-414	4.0	7.4	3.1	6.3	10.9	3.6	7.1	2.4	3.4	5.6	5
IGFRI-67-365 (NC)	4.7	7.8	7.1	12.7	13.2	2.8	7.3	2.6	6.8	7.3	1
CAZRI 75 (NC)	3.7	7.3	5.9	9.9	12.2	2.3	5.6	2.9	4.1	6.2	3
IGFRI 3108 (NC)	3.2	8.1	6.1	9.4	10.0	2.4	4.8	2.3	6.5	5.8	4
Mean	3.6	6.7	5.4	9.2	11.0	2.9	5.6	2.0	4.5	5.8	

Table 14.6 VT Cenchrus ciliaris-2019 (3rd Year): Varietal Trial in *Cenchrus Ciliaris* (Perennial): Crude Protein (%)

Entries	Ludh-	Bika-	Ana-	Rah-	Urulikan-	Jabal-	Coimb-	Avika-	**Rai-	Aver-	Ra-
Entries	iana	ner	nd	uri	chan	pur	atore	nagar	pur	age	nk
RCCB-06	6.3	10.6	7.0	7.8	8.8	7.2	7.9	7.3		7.9	1
RCC-2016-8	6.2	8.9	7.3	8.6	7.5	7.2	7.6	7.3	5.2	7.6	2
IG-67-1263	6.5	6.6	6.8	8.0	8.6	7.0	6.7	5.8		7.0	6
CAZRI-327	6.7	7.0	7.3	8.3	8.1	7.7	6.3	6.4	6.8	7.2	5
RCCB-05	6.3	10.1	6.3	8.3	8.6	7.8	5.5	5.5		7.3	4
IG-96-414	6.2	7.5	6.9	8.3	8.7	7.7	5.1	5.3	8.7	7.0	6
IGFRI-67-365 (NC)	6.2	10.5	7.0	7.8	6.7	7.1	6.1	7.7	7.1	7.4	3
CAZRI 75 (NC)	5.3	11.5	5.9	7.3	7.4	7.0	6.0	7.9	6.1	7.3	4
IGFRI 3108 (NC)	5.5	10.2	6.6	7.1	7.3	6.9	5.8	5.9	8.2	6.9	7
Mean	6.1	9.2	6.8	7.9	8.0	7.3	6.3	6.6	7.0	7.3	

Table 14.7 VT Cenchrus ciliaris-2019 (3rd Year): Varietal Trial in *Cenchrus Ciliaris* (Perennial): Plant Height (cm)

Entries	Ludh-	Bika-	Jodh-	Avika-	Ana-	Rah-	Urulikan-	Jha-	Jabal-	Coimb-	Man-	**Rai-	Aver-	Ra-
Entries	iana	ner	pur	nagar	nd	uri	chan	nsi	pur	atore	dya	pur	age	nk
RCCB-06	80.1	72.4	62.6	78.3	84.4	91.7	49.8	87.5	63.6	115.3	89.5		79.6	8
RCC-2016-8	94.2	90.0	68.5	88.3	102.2	108.8	51.9	97.1	60.2	122.0	77.1	118.3	87.3	4
IG-67-1263	73.4	87.4	67.6	81.3	86.9	102.1	62.9	106.1	55.8	107.0	68.1		81.7	7
CAZRI-327	75.6	75.8	61.2	80.7	81.8	87.8	52.1	92.5	62.6	107.3	91.3	123.6	79.0	9
RCCB-05	85.2	88.4	59.0	83.3	86.2	99.0	71.9	120.4	70.3	110.0	92.3		87.8	3
IG-96-414	84.3	92.8	69.6	86.0	85.0	100.2	65.3	99.4	72.6	124.6		99.0	88.0	2
IGFRI-67-365 (NC)	82.4	89.0	72.1	91.0	100.6	577.1	44.6	86.8	55.0	125.6	74.1	128.9	127.1	1
CAZRI 75 (NC)	94.1	88.2	69.9	93.3	88.1	107.2	59.0	103.8	53.5	114.0	77.3	118.6	86.2	5
IGFRI 3108 (NC)	82.4	76.3	76.1	87.0	89.3	111.2	59.5	98.7	53.5	100.6	81.3	120.3	83.3	6
Mean	83.5	84.5	67.4	85.5	89.4	153.9	57.4	99.1	60.8	114.0	81.4	118.1	88.9	

Table 14.8 VT Cenchrus ciliaris-2019 (3rd Year): Varietal Trial in *Cenchrus Ciliaris* (Perennial): Leaf Stem Ratio

Entries	Ludh-	Avika-	Ana-	Rah-	Urulikan-	Jabal-	Coimb-	Man-	**Rai-	Aver-	Ra-
Entries	iana	nagar	nd	uri	chan	pur	atore	dya	pur	age	nk
RCCB-06	0.81	1.11	2.85	0.69	0.56	0.78	0.34	0.65		0.97	3
RCC-2016-8	1.28	1.47	1.00	1.25	0.53	0.73	0.36	0.60	0.44	0.90	6
IG-67-1263	1.68	1.41	0.64	0.94	0.69	0.66	0.34	0.52		0.86	7
CAZRI-327	1.58	1.52	0.43	0.98	0.64	0.75	0.33	0.62	0.7	0.86	7
RCCB-05	1.31	1.21	1.70	1.02	0.68	0.81	0.36	0.69		0.97	3
IG-96-414	1.66	1.13	1.44	0.96	0.73	0.81	0.37		0.57	1.01	2
IGFRI-67-365 (NC)	1.61	1.18	1.13	1.18	0.57	0.66	0.34	0.67	0.43	0.92	5
CAZRI 75 (NC)	1.46	1.13	2.13	1.50	0.76	0.59	0.36	0.68	0.57	1.08	1
IGFRI 3108 (NC)	1.21	1.16	1.70	1.26	0.57	0.65	0.39	0.67	0.54	0.95	4
Mean	1.40	1.26	1.45	1.09	0.64	0.72	0.35	0.64	0.54	0.95	

Table 14.9 VT Cenchrus ciliaris-2019 (3rd Year): Varietal Trial in *Cenchrus Ciliaris* (Perennial): ADF (%), NDF (%) & IVDMD %)

		ADF	(%)			NDF (%)		IVDN	ID (%)
Entries	Ludh-	Avika-	Aver-	Ra-	Ludh-	Avika-	Aver-	Ra-	Ludh-	Ra-
	iana	nagar	age	nk	iana	nagar	age	nk	iana	nk
RCCB-06	48.9	42.8	45.9	4	65.6	75.9	70.8	1	45.3	1
RCC-2016-8	50.1	43.0	46.6	8	69.3	75.9	72.6	3	40.3	8
IG-67-1263	49.3	43.6	46.5	7	70.4	77.1	73.7	5	42.8	3
CAZRI-327	49.3	43.0	46.2	6	72.9	76.9	74.9	7	40.5	6
RCCB-05	50.8	42.7	46.7	9	70.6	75.4	73.0	4	40.0	9
IG-96-414	46.4	43.4	44.9	2	72.0	83.2	77.6	9	41.0	4
IGFRI-67-365 (NC)	49.7	42.3	46.0	5	69.5	83.4	76.5	8	40.9	5
CAZRI 75 (NC)	46.9	42.4	44.7	1	68.6	74.9	71.7	2	40.4	7
IGFRI 3108 (NC)	47.2	43.7	45.4	3	70.9	77.9	74.4	6	43.3	2
Mean	48.7	43.0	45.9		70.0	<i>77.</i> 9	73.9		41.6	

Table 15.1 VT Cenchrus setigerus-2019 (3rd Year): Varietal Trial in *Cenchrus setigerus* (Perennial): Green Forage Yield (q/ha)

		Nor	th West Zone	e					Centr	al Zone			
Entries	Avika-	Bika-	**Jodh-	Aver-	Ra-	Ana-	Rah-	Urulikan-	Jha-	Jabal-	**Rai-	Aver-	Ra-
	nagar	ner	pur	age	nk	nd	uri	chan	nsi	pur	pur	age	nk
IG-97-433	103.4	176.4	21.7	139.9	6	167.2	322.8	516.3	338.3	176.6		304.3	6
RCSB-09	109.6	172.4	20.8	141.0	5	134.4	273.8	488.8	337.7	189.3		284.8	7
IG-97-447	99.3	224.3	20.6	161.8	4	182.2	355.5	461.8	285.0	256.0		308.1	5
RCSB-08	92.1	163.8	13.2	127.9	7	121.4	283.3	496.3	545.0	238.6		336.9	4
IG-96-706 (NC)	114.1	289.2	10.6	201.6	3	249.4	414.0	563.5	378.3	204.3	158.3	361.9	3
TNCS-265 (NC)	121.9	337.1	14.6	229.5	1	228.9	424.7	585.7	405.0	174.3	252.8	363.7	2
CAZRI-76 (NC)	93.2	319.6	19.8	206.4	2	177.2	350.0	557.4	751.7	234.5	243.1	414.1	1
Mean	104.8	240.4	17.3	172.6		180.1	346.3	524.2	434.4	210.5	218.1	339.1	
CD at 5%	2.8	59.2	6.9			41.6	55.6	49.0	2.1	5.7	23.7		
CV%	12.5	13.7	22.5			13.0	9.0	5.2	2.7	22.0	14.3		

Note: ** Data is not included in zonal and all India average due to low yield of data

Table 15.1 VT Cenchrus setigerus-2019 (3rd Year): Varietal Trial in Cenchrus setigerus (Perennial): Green Forage Yield (q/ha)

Entries		South	Zone		All Indi	ia
Entries	Coimbatore	Mandya	Average	Rank	Average	Rank
IG-97-433	340.8	202.1	271.5	5	260.4	7
RCSB-09	395.8	362.0	378.9	3	273.7	5
IG-97-447	298.6	216.4	257.5	7	264.3	6
RCSB-08	396.7	131.8	264.2	6	274.3	4
IG-96-706 (NC)	485.5	331.9	408.7	1	336.7	2
TNCS-265 (NC)	428.6	220.4	324.5	4	325.2	3
CAZRI-76 (NC)	457.2	302.7	380.0	2	360.4	1
Mean	400.5	252.5	326.5		299.3	
CD at 5%	48.3	14.6				
CV%	6.8	10.1				

Table 15.2 VT Cenchrus setigerus-2019 (3rd Year): Varietal Trial in Cenchrus setigerus (Perennial): Dry Matter Yield (q/ha)

		North	West Zone	9				Co	entral Zo	ne	_		
Entries	Avika-	Bika-	**Jodh-	Aver-	Ra-	Ana-	Rah-	Urulikan-	Jha-	Jabal-	**Rai-	Aver-	Ra-
	nagar	ner	pur	age	nk	nd	uri	chan	nsi	pur	pur	age	nk
IG-97-433	35.0	52.2	6.4	43.6	5	48.4	88.5	106.4	84.6	31.4		71.8	6
RCSB-09	39.6	43.8	5.8	41.7	6	40.1	84.1	83.4	84.4	33.0		65.0	7
IG-97-447	26.0	63.3	5.8	44.7	4	56.7	100.9	101.1	71.3	45.7		75.1	5
RCSB-08	25.7	42.3	4.3	34.0	7	34.6	84.2	89.3	136.3	42.5		77.4	4
IG-96-706 (NC)	35.1	78.7	3.2	56.9	3	73.2	122.0	96.4	94.6	36.3	42.6	84.5	3
TNCS-265 (NC)	39.3	115.0	3.5	77.1	1	70.2	127.4	123.0	101.3	31.6	63.5	90.7	2
CAZRI-76 (NC)	31.3	100.3	5.5	65.8	2	56.4	101.6	107.8	187.9	42.3	64.0	99.2	1
Mean	33.1	70.8	4.9	52.0		54.2	101.2	101.1	108.6	37.5	56.7	80.5	
CD at 5%	0.9	17.6	1.7			11.4	16.3	9.8	5.3	3.9	7.3		
CV%	12.8	13.8	19.7			11.9	9.0	5.4	2.7	20.0	16.8		

Note: ** Data is not included in zonal and all India average due to low yield of data

Table 15.2 VT Cenchrus setigerus-2019 (3rd Year): Varietal Trial in Cenchrus setigerus (Perennial): Dry Matter Yield (q/ha)

Entrica		South Zone									
Entries	Coimbatore	Mandya	Average	Rank	Average	Rank					
IG-97-433	74.9	45.9	60.4	5	63.0	7					
RCSB-09	86.4	95.2	90.8	2	65.6	4					
IG-97-447	63.4	52.9	58.1	6	64.6	5					
RCSB-08	82.3	32.6	57.4	7	63.3	6					
IG-96-706 (NC)	108.1	83.9	96.0	1	80.9	3					
TNCS-265 (NC)	89.7	50.3	70.0	4	83.1	2					
CAZRI-76 (NC)	96.7	69.2	82.9	3	88.2	1					
Mean	85.9	61.4	73.7		72.7						
CD at 5%	10.7	3.5									
CV%	7.0	9.9									

Table 15.3 VT Cenchrus setigerus-2019 (3rd Year): Varietal Trial in *Cenchrus setigerus* (Perennial): Green Forage Yield (q/ha/day)

Entries	Avikanagar	Bikaner	Anand	Jhansi	Coimbatore	**Raipur	Average	Rank
IG-97-433	3.00	1.96	0.44	3.39	0.95		1.95	6
RCSB-09	2.00	1.92	0.35	3.40	1.10		1.75	7
IG-97-447	4.00	2.49	0.48	3.00	0.83		2.16	4
RCSB-08	6.00	1.82	0.32	5.61	1.10		2.97	2
IG-96-706 (NC)	5.00	3.21	0.66	4.21	1.35	1.38	2.88	3
TNCS-265 (NC)	1.00	3.75	0.60	4.10	1.19	2.2	2.13	5
CAZRI-76 (NC)	7.00	3.55	0.47	7.82	1.27	2.11	4.02	1
Mean	4.00	2.67	0.47	4.50	1.11	1.90	2.55	

Table 15.4 VT Cenchrus setigerus-2019 (3rd Year): Varietal Trial in *Cenchrus setigerus* (Perennial): Dry Matter Yield (q/ha/day)

Entries	Avikanagar	Bikaner	Anand	Jhansi	Coimbatore	**Raipur	Average	Rank
IG-97-433	0.83	0.58	0.13	0.85	0.21		0.52	5
RCSB-09	0.89	0.49	0.11	0.85	0.24		0.52	5
IG-97-447	0.59	0.70	0.15	0.75	0.18		0.47	6
RCSB-08	0.54	0.47	0.09	1.40	0.23		0.55	4
IG-96-706 (NC)	0.68	0.87	0.19	1.05	0.30	0.37	0.62	3
TNCS-265 (NC)	0.80	1.28	0.18	1.02	0.25	0.55	0.71	2
CAZRI-76 (NC)	0.61	1.12	0.15	1.96	0.27	0.56	0.82	1
Mean	0.71	0.79	0.14	1.13	0.24	0.49	0.60	

Table 15.5 VT Cenchrus Setigerus-2019 (3rd Year): Varietal Trial in Cenchrus Setigerus (Perennial): Crude Protein Yield (q/ha)

			, -	(1)							
Entries	Bikaner	Anand	Rahuri	Urulikanchan	Jabalpur	Avikanagar	Coimbatore	**Raipur	Average	Rank	
IG-97-433	3.2	2.9	7.6	9.4	2.1	1.8	6.2		4.7	3	
RCSB-09	3.4	2.5	6.1	7.6	2.3	2.0	6.0		4.3	5	
IG-97-447	6.5	3.3	7.1	7.4	3.2	1.5	3.4		4.6	4	
RCSB-08	3.0	2.3	7.2	7.3	3.0	1.6	7.6		4.6	4	
IG-96-706 (NC)	5.3	4.4	8.9	7.8	2.4	1.6	8.0	3.3	5.5	2	
TNCS-265 (NC)	7.2	4.4	9.6	10.3	2.1	2.2	5.5	5.4	5.9	1	
CAZRI-76 (NC)	8.6	3.2	6.9	8.8	3.1	1.5	6.4	4.8	5.5	2	
Mean	5.3	3.3	7.6	8.4	2.6	1.8	6.1	4.5	5.0		

AICRP on Forage Crops & Utilization

Annual Report Kharif-2021

Table 15.6 VT Cenchrus setigerus-2019 (3rd Year): Varietal Trial in *Cenchrus setigerus* (Perennial): Crude Protein (%)

Entries	Bikaner	Anand	Rahuri	Urulikanchan	Jabalpur	Coimbatore	Avikanagar	**Raipur	Average	Rank
IG-97-433	6.2	5.9	8.6	8.8	6.5	8.3	5.2		6.9	4
RCSB-09	7.8	6.1	7.3	9.1	6.9	7.0	5.0		7.0	3
IG-97-447	10.3	5.8	7.1	7.3	7.0	5.3	5.9		7.2	2
RCSB-08	7.2	6.7	8.6	8.2	7.1	9.2	6.4		7.4	1
IG-96-706 (NC)	6.7	5.9	7.3	8.1	6.5	7.4	4.5	7.7	6.5	6
TNCS-265 (NC)	6.2	6.2	7.6	8.4	6.7	6.1	5.7	8.5	6.8	5
CAZRI-76 (NC)	8.6	5.7	6.8	8.2	7.3	6.6	4.8	7.6	6.9	4
Mean	7.6	6.0	7.6	8.3	6.9	7.1	5.3	7.9	6.9	

Table 15.7 VT Cenchrus setigerus-2019 (3rd Year): Varietal Trial in *Cenchrus setigerus* (Perennial): Plant Height (cm)

Entries	Avika-	Bika-	Jodh-	Ana-	Rah-	Urulikan-	Jha-	Jabal-	Coimb-	Man-	**Rai-	Aver-	Ra-
	nagar	ner	pur	nd	uri	chan	nsi	pur	atore	dya	pur	age	nk
IG-97-433	82.7	56.0	61.3	77.8	103.6	48.8	90.9	52.7	89.8	33.6		69.7	4
RCSB-09	84.3	68.8	45.0	65.9	82.8	51.0	96.3	52.8	86.6	37.7		67.1	6
IG-97-447	82.3	85.0	57.7	77.3	96.3	52.9	83.7	66.8	95.0	37.6		73.5	2
RCSB-08	68.1	40.5	38.4	57.8	68.7	59.8	101.6	65.0	96.5	38.8		63.5	7
IG-96-706 (NC)	79.3	52.0	65.4	72.6	100.2	63.9	90.6	54.7	110.5	35.1	85.6	72.4	3
TNCS-265 (NC)	86.0	80.0	57.0	72.3	91.4	42.9	92.3	51.8	94.0	28.3	90.7	69.6	5
CAZRI-76 (NC)	79.0	64.3	59.2	72.7	106.2	59.6	101.3	62.2	98.5	37.8	88.8	74.1	1
Mean	80.3	63.8	54.8	70.9	92.7	54.1	93.8	58.0	95.8	35.5	88.4	70.0	

Table 15.8 VT Cenchrus setigerus-2019 (3rd Year): Varietal Trial in Cenchrus setigerus (Perennial): Leaf Stem Ratio

Entries	Avikanagar	Anand	Rahuri	Urulikanchan	Jabalpur	Coimbatore	Mandya	**Raipur	Average	Rank
IG-97-433	1.39	1.32	0.91	0.55	0.68	0.35	0.39		0.80	6
RCSB-09	1.62	1.65	1.48	0.56	0.69	0.33	0.43		0.97	3
IG-97-447	1.43	2.10	0.86	0.65	0.89	0.34	0.29		0.94	5
RCSB-08	1.47	2.40	0.59	0.74	0.84	0.35	0.38		0.97	3
IG-96-706 (NC)	1.49	2.68	1.12	0.67	0.71	0.37	0.35	0.70	1.05	1
TNCS-265 (NC)	1.00	2.63	1.12	0.59	0.67	0.36	0.37	0.65	0.96	4
CAZRI-76 (NC)	1.59	2.73	0.75	0.60	0.79	0.38	0.36	0.74	1.03	2
Mean	1.43	2.22	0.98	0.62	0.75	0.35	0.37	0.70	0.96	

Table 15.9 VT Cenchrus Setigerus-2019 (3rd Year): Varietal Trial in Cenchrus Setigerus (Perennial): ADF (%) & NDF (%)

Entwing	ADF (%)	3	NDF (%)	
Entries	Avikanagar	Rank	Avikanagar	Rank
IG-97-433	39.8	2	76.3	3
RCSB-09	39.4	1	78.6	6
IG-97-447	41.2	4	76.5	4
RCSB-08	40.9	3	76.0	2
IG-96-706 (NC)	42.9	6	77.2	5
TNCS-265 (NC)	41.8	5	75.0	1
CAZRI-76 (NC)	45.4	7	79.1	7
Mean	41.6		77.0	

16. VTBN-2019 (New): VARIETAL TRIAL IN BAJRA NAPIER HYBRID (PERENNIAL) – $3^{\rm rd}$ year

(Reference Table: 16.1 to 16.9)

The trial was established in 2019 with fourteen entries and two national checks (CO-BN-5, BNH-10) at 19 locations across the country. It included 2 locations in hill, 3 in NW, 3 in NE, 5 in central 4 in south zone.

The entries are in coded form and will be decoded after completion of trial.

17. VT in Stylosanthes

The trial failed as most of the entries failed to germinate at many locations.

Table 16.1 VTBN-2019 (3rd Year): Varietal Trial in Bajra Napier hybrid (Perennial): Green Forage Yield (q/ha)

E-4-i-a		Hill 2	Zone			North West Z	one	
Entries	Palampur	Almora	Average	Rank	Ludhiana	Bikaner	Average	Rank
VTBN-2019-1		69.1	69.1	13	1188.3	1430.0	553.9	6
VTBN-2019-2		102.3	102.3	12	945.6		290.5	15
VTBN-2019-3	471.3		471.3	2	975.3		480.0	11
VTBN-2019-4	484.7	118.6	301.6	8	945.6	1292.4	525.2	9
VTBN-2019-5		123.7	123.7	11	1102.6	1112.6	494.7	10
VTBN-2019-6	457.4	56.0	256.7	9	1087.4	1328.3	532.4	8
VTBN-2019-7	557.8	150.0	353.9	6	975.6	1247.6	548.5	7
VTBN-2019-8					675.8		675.8	2
VTBN-2019-9		185.3	185.3	10	1020.4	1827.1	645.6	3
VTBN-2019-10					625.3		625.3	5
VTBN-2019-11	598.6		598.6	1	650.4		462.2	12
VTBN-2019-12		67.3	67.3	14	1245.6		348.5	14
VTBN-2019-13	594.4	55.1	324.8	7	945.7	1364.1	548.5	7
VTBN-2019-14	668.9	175.1	422.0	5	1320.6	1779.9	728.6	1
VTBN-2019-15	698.1	162.8	430.5	4	745.6		408.2	13
VTBN-2019-16	778.2	126.2	452.2	3	1095.4	1332.7	631.3	4
Mean	589.9	115.9	297.1		971.6	1412.7	531.2	
CD at 5%	74.7	31.0			122.4	303.8		
CV%	7.3	25.0			12.6	12.3		

<u>Table 16.1 VTBN-2019 (3rd Year): Varietal Trial in Bajra Napier hybrid (Perennial): Green Forage Yield (q/ha)</u>

Entries		North 1	East Zone	*	•			Cent	ral Zone			
Entries	Bhubaneswar	Ranchi	Jorhat	Average	Rank	Anand	Rahuri	Urulikanchan	Raipur	Jabalpur	Average	Rank
VTBN-2019-1	3608.7	379.5	205.7	1398.0	3	742.7	1358.9	2422.9	910.0	613.2	1209.5	5
VTBN-2019-2	1972.3	418.5	238.2	876.3	15	509.4	1528.0	1948.2	733.3	754.1	1094.6	14
VTBN-2019-3	1987.4	495.8	220.7	901.3	13	622.2	1634.8	2138.9	990.0	590.3	1195.2	8
VTBN-2019-4	3148.5	395.4	236.8	1260.2	6	1299.4	981.0	1998.2	611.7	768.0	1131.7	12
VTBN-2019-5	2071.1	404.6	208.3	894.7	14	1389.9	1293.8	1784.9	805.0	721.5	1199.0	7
VTBN-2019-6	2430.7	339.5	239.1	1003.1	11	865.2	1295.3	1986.5	763.3	827.7	1147.6	11
VTBN-2019-7	1793.3	431.7	134.5	786.5	16	1317.2	1005.5	1780.9	648.3	859.6	1122.3	13
VTBN-2019-8	3045.0	519.0	221.2	1261.7	5	793.6	1179.8	1928.5	596.7	629.9	1025.7	15
VTBN-2019-9	2895.4	339.9	239.3	1158.2	7	933.6	1433.3	1821.7	811.7	820.8	1164.2	10
VTBN-2019-10	2471.0	367.3	208.9	1015.7	10	2110.7	1611.1	2584.6	696.7	736.1	1547.8	2
VTBN-2019-11	3469.1	485.1	237.9	1397.4	4	339.7		1818.0	653.3	772.2	895.8	16
VTBN-2019-12	2258.0	453.3	132.7	948.0	12	1073.8	1480.5	2235.9	640.0	732.6	1232.6	4
VTBN-2019-13	2663.0	345.3	222.4	1076.9	9	1084.7	1491.1	1960.5	675.0	737.9	1189.9	9
VTBN-2019-14	2806.1	367.8	237.3	1137.1	8	658.6	1572.6	2256.2	868.3	677.1	1206.6	6
VTBN-2019-15	3785.7		241.1	2013.4	2	745.0	1359.3	2656.9	1140.0	726.3	1325.5	3
VTBN-2019-16	3492.2			3492.2	1.0	1105.5	2041.9	2727.2		668.5	1635.8	1.0
Mean	2743.6	410.2	214.9	1288.8		974.5	1417.8	2128.1	769.6	727.2	1207.7	
CD at 5%	184.2	29.4	5.5			284.5	222.8	285.2	159.0	10.9		
CV%	4.0	4.3	4.0			17.5	9.4	8.0	12.4	15.4		

Table 16.1 VTBN-2019 (3rd Year): Varietal Trial in Bajra Napier hybrid (Perennial): Green Forage Yield (q/ha)

Entries	,		South	Zone		· • · · ·	All Ind	ia
Entries	Coimbatore	Mandya	Hyderabad	Vellayani	Average	Rank	Average	Rank
VTBN-2019-1	1304.1	724.7	674.7	1403.0	1026.6	14	1135.7	6
VTBN-2019-2	1538.8	721.8	558.1	1571.0	1097.4	12	967.1	15
VTBN-2019-3	2309.4	938.3	769.1	1976.0	1498.2	2	1151.4	4
VTBN-2019-4	2102.7	667.9	613.6	1227.0	1152.8	9	1055.7	13
VTBN-2019-5	1536.9	939.5	816.3	1581.0	1218.4	6	1059.4	12
VTBN-2019-6	1601.3	852.1	572.0	1548.0	1143.4	11	1015.6	14
VTBN-2019-7	1861.0	668.5	349.9	1186.0	1016.4	15	935.5	16
VTBN-2019-8	1727.7	990.6	827.4	1555.0	1275.2	4	1130.0	7
VTBN-2019-9	1386.1	886.8	538.7	1178.0	997.4	16	1087.9	9
VTBN-2019-10	1415.2	832.4	752.5	1339.0	1084.8	13	1211.6	3
VTBN-2019-11	2022.1	877.4		1764.0	1554.5	1	1140.7	5
VTBN-2019-12	1601.3	895.4	780.2	1383.0	1165.0	8	1070.0	10
VTBN-2019-13	2088.8	774.0	685.8	1352.0	1225.1	5	1065.0	11
VTBN-2019-14	1473.6	729.1	666.4	1709.0	1144.5	10	1122.9	8
VTBN-2019-15	1697.4	923.9	494.2	1755.0	1217.6	67	1223.7	2
VTBN-2019-16	2551.3	976.7	755.3	1667.0	1487.6	3	1486.0	1
Mean	1763.6	837.4	656.9	1512.1	1206.6		1116.1	
CD at 5%	102.6	129.6	142.7	23.3				
CV%	3.5	11.7	12.9	0.9				

Table 16.2 VTBN-2019 (3rd Year): Varietal Trial in Bajra Napier hybrid (Perennial): Dry Mater Yield (q/ha)

Entries		Hill	Zone	·		North West	Zone	
Entries	Palampur	Almora	Average	Rank	Ludhiana	Bikaner	Average	Rank
VTBN-2019-1		14.1	14.1	14	205.6	253.8	229.7	6
VTBN-2019-2		24.9	24.9	12	160.8		160.8	11
VTBN-2019-3	92.5	0.0	46.3	9	159.0		159.0	12
VTBN-2019-4	93.7	25.8	59.7	6	158.9	227.6	193.3	10
VTBN-2019-5		31.7	31.7	11	183.0	213.6	198.3	9
VTBN-2019-6	83.5	15.0	49.3	8	194.6	244.4	219.5	7
VTBN-2019-7	106.3	35.5	70.9	4	176.6	311.9	244.3	3
VTBN-2019-8		0.0			117.6		117.6	14
VTBN-2019-9		43.8	43.8	10	178.6	449.2	313.9	2
VTBN-2019-10		0.0			106.3		106.3	16
VTBN-2019-11	113.2	0.0	56.6	7	111.2		111.2	15
VTBN-2019-12		15.2	15.2	13	203.0		203.0	8
VTBN-2019-13	112.1	13.0	62.6	5	156.0	304.2	230.1	5
VTBN-2019-14	137.2	43.4	90.3	2	224.5	436.1	330.3	1
VTBN-2019-15	132.3	45.1	88.7	3	129.7		129.7	13
VTBN-2019-16	148.2	34.0	91.1	1	191.7	277.3	234.5	4
Mean	113.2	21.3	53.2		166.1	302.0	198.8	
CD at 5%	18.6	5.4			51.6	62.7		
CV%	9.4	17.9			13.4	11.9		

Table 16.2 VTBN-2019 (3rd Year): Varietal Trial in Bajra Napier hybrid (Perennial): Dry Mater Yield (q/ha)

Entries	, , ,	North I	East Zone		Ĭ	,		Cent	ral Zone			
	Bhubaneswar	Ranchi	Jorhat	Average	Rank	Anand	Rahuri	Urulikanchan	Raipur	Jabalpur	Average	Rank
VTBN-2019-1	851.8	127.5	50.0	343.1	4	147.9	391.5	691.3	291.6	115.3	327.5	4
VTBN-2019-2	466.7	143.6	56.9	222.4	13	115.4	400.7	593.2	222.6	146.3	295.6	11
VTBN-2019-3	468.0	149.2	53.0	223.4	14	108.9	468.5	552.3	277.3	110.3	303.4	7
VTBN-2019-4	754.0	126.4	58.7	313.0	6	265.6	291.8	513.9	177.9	149.4	279.7	14
VTBN-2019-5	494.0	109.5	47.9	217.1	15	268.5	362.5	483.5	241.9	138.0	298.9	9
VTBN-2019-6	586.6	106.9	60.2	251.2	12	164.2	378.4	574.9	235.8	162.3	303.1	8
VTBN-2019-7	419.9	152.1	33.0	201.7	16	298.9	296.6	502.0	201.1	169.0	293.5	12
VTBN-2019-8	732.3	155.0	55.9	314.4	5	157.3	307.3	330.3	147.7	118.6	212.2	15
VTBN-2019-9	704.9	109.4	55.4	289.9	8	195.9	393.7	498.2	234.9	160.1	296.6	10
VTBN-2019-10	600.9	133.7	49.3	261.3	10	383.1	443.9	603.0	222.3	142.1	358.9	2
VTBN-2019-11	836.4	180.0	54.5	357.0	3	72.0		388.0	173.5	150.6	196.0	16
VTBN-2019-12	569.3	169.2	31.8	256.8	11	210.0	398.7	726.9	192.8	141.0	333.9	3
VTBN-2019-13	628.7	107.1	53.7	263.2	9	243.5	386.2	589.9	165.9	142.8	305.7	6
VTBN-2019-14	706.2	133.9	58.6	299.6	7	141.7	393.8	493.4	281.6	129.5	288.0	13
VTBN-2019-15	896.9		52.9	474.9	1	172.5	354.8	550.8	341.2	139.8	311.8	5
VTBN-2019-16	852.5		56.6	454.5	2	214.8	556.6	619.9		126.7	379.5	1
Mean	660.6	136.0	51.8	296.5		197.5	388.3	544.5	227.2	140.1	299.0	
CD at 5%	48.3	22.7	3.7			58.7	62.6	74.5	46.2	6.2		
CV%	4.4	4.0	6.7			17.8	9.6	8.2	12.2	15.4		

Table 16.2 VTBN-2019 (3rd Year): Varietal Trial in Bajra Napier hybrid (Perennial): Dry Mater Yield (q/ha)

	2017 (3 Tear): V		South Zor	`	<i>,</i>	`.	All In	dia
Entries	Coimbatore	Mandya	Hyderabad	Vellayani	Average	Rank	Average	Rank
VTBN-2019-1	252.5	153.3	176.1	188.0	192.5	14	260.7	3
VTBN-2019-2	298.6	143.2	141.9	215.0	199.7	13	223.6	15
VTBN-2019-3	451.5	206.3	199.9	269.0	281.7	2	237.7	9
VTBN-2019-4	410.0	111.9	162.0	156.0	210.0	11	230.2	11
VTBN-2019-5	298.5	215.7	246.1	208.0	242.1	5	236.2	10
VTBN-2019-6	312.2	189.6	160.8	193.0	213.9	10	228.9	12
VTBN-2019-7	355.7	142.3	91.0	154.0	185.7	16	215.4	16
VTBN-2019-8	338.9	236.9	234.7	208.0	254.6	4	224.3	14
VTBN-2019-9	272.3	195.5	148.1	143.0	189.7	15	252.2	6
VTBN-2019-10	278.4	182.3	192.5	162.0	203.8	12	250.0	7
VTBN-2019-11	401.2	189.5		248.0	279.6	3	224.5	13
VTBN-2019-12	310.5	202.7	218.1	183.0	228.6	7	255.2	4
VTBN-2019-13	404.0	162.6	208.7	184.0	239.8	6	241.4	8
VTBN-2019-14	278.5	162.3	191.4	224.0	214.1	9	252.3	5
VTBN-2019-15	319.5	212.9	149.7	220.0	225.5	8	265.6	2
VTBN-2019-16	506.7	224.8	186.6	224.0	285.5	1	301.4	1
Mean	343.1	183.2	180.5	198.7	227.9		243.7	
CD at 5%	20.4	28.2	38.0	11.1				
CV%	3.6	11.7	12.5	3.4				

Table 16.3 VTBN-2019 (3rd Year): Varietal Trial in Bajra Napier hybrid (Perennial): Green Forage Yield (q/ha/day)

Entries	Ludhiana	Anand	Raipur	Bikaner	Hyderabad	Vellayani	Coimbatore	Average	Rank
VTBN-2019-1	6.25	2.19	5.91	5.22	3.75	17.00	3.63	6.28	9
VTBN-2019-2	4.98	1.50	4.76		3.10	19.00	4.29	6.27	10
VTBN-2019-3	5.13	1.84	6.43		4.27	24.00	6.43	8.02	1
VTBN-2019-4	4.98	3.83	3.97	4.72	3.41	14.00	5.86	5.82	14
VTBN-2019-5	5.8	4.10	5.23	4.06	4.54	18.00	4.28	6.57	6
VTBN-2019-6	5.72	2.55	4.96	4.85	3.18	17.00	4.46	6.10	12
VTBN-2019-7	5.13	3.89	4.21	4.55	1.94	14.00	5.18	5.56	16
VTBN-2019-8	3.56	2.34	3.87		4.60	19.00	4.81	6.36	8
VTBN-2019-9	5.37	2.75	5.27	6.67	2.99	13.00	3.86	5.70	15
VTBN-2019-10	3.29	6.23	4.52		4.18	14.00	3.94	6.03	13
VTBN-2019-11	3.42	1.00	4.24			22.00	5.63	7.26	3
VTBN-2019-12	6.56	3.17	4.16		4.33	16.00	4.46	6.45	7
VTBN-2019-13	4.98	3.20	4.38	4.98	3.81	16.00	5.82	6.17	11
VTBN-2019-14	6.95	1.94	5.64	6.50	3.70	20.00	4.10	6.98	4
VTBN-2019-15	3.92	2.20	7.40		2.75	20.00	4.73	6.83	5
VTBN-2019-16	5.77	3.26		4.86	4.20	20.00	7.11	7.53	2
Mean	5.11	2.87	5.00	5.16	3.65	17.69	4.91	6.50	

Table 16.4 VTBN-2019 (3rd Year): Varietal Trial in Bajra Napier hybrid (Perennial): Dry Matter Yield (q/ha/day)

- ·					, ,		Ticia (q/ma/aa	· ·	
Entries	Ludhiana	Anand	Raipur	Bikaner	Hyderabad	Vellayani	Coimbatore	Average	Rank
VTBN-2019-1	1.08	0.44	1.89	0.93	0.98	4.10	0.70	1.45	9
VTBN-2019-2	0.85	0.34	1.45		0.79	4.70	0.83	1.49	7
VTBN-2019-3	0.84	0.32	1.80		1.17	6.00	1.26	1.90	1
VTBN-2019-4	0.84	0.78	1.16	0.83	0.90	3.50	1.14	1.31	13
VTBN-2019-5	0.96	0.79	1.57	0.78	1.37	4.60	0.83	1.56	5
VTBN-2019-6	1.02	0.49	1.53	0.89	0.89	4.30	0.87	1.43	11
VTBN-2019-7	0.93	0.88	1.31	1.14	0.51	3.40	0.99	1.31	13
VTBN-2019-8	0.62	0.46	0.96		1.30	4.60	0.94	1.48	8
VTBN-2019-9	0.94	0.58	1.53	1.64	0.86	3.20	0.76	1.36	12
VTBN-2019-10	0.56	1.13	1.44		1.07	3.60	0.78	1.43	11
VTBN-2019-11	0.59	0.21	1.13			5.50	1.12	1.71	2
VTBN-2019-12	1.07	0.62	1.25		1.21	4.00	0.86	1.50	6
VTBN-2019-13	0.82	0.72	1.08	1.11	1.16	4.10	1.13	1.44	10
VTBN-2019-14	1.18	0.42	1.83	1.59	1.06	4.90	0.78	1.68	3
VTBN-2019-15	0.68	0.51	2.22		0.83	4.90	0.89	1.67	4
VTBN-2019-16	1.01	0.63		1.01	1.04	5.00	1.41	1.68	3
Mean	0.87	0.58	1.48	1.10	1.01	4.40	0.96	1.52	

Table 16.5 VTBN-2019 (3rd Year): Varietal Trial in Bajra Napier hybrid (Perennial): Crude Protein Yield (q/ha)

Entries	Palam-	Ludh-	Bika-	Bhuban-	Jor-	Ran-	Ana-	Rah-	Urulikan-	Rai-	Jabal-	Man-	Hydera-	Coimb-	Aver-	Ra-
Entries	pur	iana	ner	eswar	hat	chi	nd	uri	chan	pur	pur	dya	bad	atore	age	nk
VTBN-2019-1		12.7	29.5	68.1	4.0	11.2	16.6	29.0	50.3	23.2	8.5	12.0	14.5	22.1	23.2	4
VTBN-2019-2		10.1		42.8	4.0	7.2	13.9	28.9	40.9	19.9	11.4	9.4	10.3	30.0	19.1	13
VTBN-2019-3	7.2	10.0		42.8	3.8		13.3	37.5	40.2	16.4	8.0	14.5	12.4	41.5	20.6	8
VTBN-2019-4	8.5	10.6	23.7	66.5	3.6	10.5	30.8	20.5	35.9	15.3	12.0	7.8	11.6	41.2	21.3	7
VTBN-2019-5		11.0	20.1	38.6	3.1	8.5	31.0	27.2	33.4	21.9	10.2	14.3	18.5	28.7	20.5	9
VTBN-2019-6	6.3	13.6	31.3	45.2	4.0	8.9	19.5	29.5	36.6	18.1	13.2	13.4	10.5	27.3	19.8	12
VTBN-2019-7	8.4	11.1	42.6	36.0	2.5	7.6	36.1	26.1	35.5	19.2	13.7	8.7	6.1	32.7	20.4	10
VTBN-2019-8		7.3		62.2	3.1	12.9	18.1	22.8	25.9	11.2	8.7	18.7	18.7	32.6	20.2	11
VTBN-2019-9		11.6	43.3	60.1	4.0	6.3	23.4	27.6	38.7	21.2	13.0	14.4	9.8	25.0	23.0	5
VTBN-2019-10		6.8		50.3	3.5	12.4	44.7	34.7	37.1	18.7	11.0	13.8	14.1	31.7	23.2	4
VTBN-2019-11	8.9	6.7		71.5	4.1		8.4		26.1	13.7	12.1	10.8		43.9	20.6	8
VTBN-2019-12		12.6		49.2	3.1	14.0	25.6	31.1	60.0	11.6	10.7	17.9	18.3	34.0	24.0	2
VTBN-2019-13	10.5	9.8	33.5	54.8	3.4	10.5	31.1	29.4	41.4	11.7	11.1	14.2	16.5	40.6	22.8	6
VTBN-2019-14	11.6	13.5	58.4	56.6	2.9	9.5	18.3	30.0	32.3	26.8	9.5	15.0	16.9	29.2	23.6	3
VTBN-2019-15	11.6	8.4		80.4	4.0		19.6	27.4	34.7	27.0	10.4	18.7	12.8	28.0	23.6	3
VTBN-2019-16	12.1	13.4	38.4	72.7	4.0		25.9	46.8	47.2		9.3	18.8	14.5	55.4	29.9	1
Mean	9.4	10.6	35.7	56.1	3.6	10.0	23.5	29.9	38.5	18.4	10.8	13.9	13.7	34.0	22.2	

Table 16.6 VTBN-2019 (3rd Year): Varietal Trial in Bajra Napier hybrid (Perennial): Crude Protein (%)

Entries	Palam-	Ludh-	Bika-	Bhuban-	Jor-	Ran-	Ana-	Rah-	Urulikan-	Rai-	Jabal-	Man-	Hydera-	Coimb-	Aver-	Ra-
Entries	pur	iana	ner	eswar	hat	chi	nd	uri	chan	pur	pur	dya	bad	atore	age	nk
VTBN-2019-1		6.2	11.6	8.0	6.6	8.8	11.3	7.4	7.3	8.0	7.3	7.8	7.7	8.8	8.2	5
VTBN-2019-2		6.3		9.2	6.3	5.0	12.0	7.2	6.9	9.0	7.8	6.6	7.6	10.1	7.8	8
VTBN-2019-3	7.9	6.3		9.1	6.5		12.2	8.0	7.3	6.0	7.2	7.0	6.3	9.2	7.8	8
VTBN-2019-4	9.0	6.7	10.4	8.8	6.3	8.3	11.5	7.0	7.0	8.7	8.0	7.0	7.1	10.1	8.3	4
VTBN-2019-5		6.0	9.4	7.8	6.4	7.8	11.5	7.5	6.9	9.0	7.4	6.5	7.3	9.6	7.9	7
VTBN-2019-6	7.6	7.0	12.8	7.7	6.5	8.3	11.8	7.8	6.4	7.7	8.1	7.0	6.7	8.8	8.1	6
VTBN-2019-7	7.9	6.3	13.7	8.6	5.3	5.0	12.0	8.8	7.1	9.7	8.1	6.1	6.6	9.2	8.2	5
VTBN-2019-8		6.2		8.5	4.8	8.3	11.5	7.4	7.8	7.7	7.4	7.9	8.0	9.6	7.9	7
VTBN-2019-9		6.5	9.6	8.5	7.6	5.8	12.0	7.0	7.8	9.0	8.1	7.4	7.1	9.2	8.1	6
VTBN-2019-10		6.4		8.4	7.2	9.3	11.7	7.8	6.2	8.3	7.8	7.5	7.7	11.4	8.3	4
VTBN-2019-11	7.9	6.0		8.5	7.3		11.6		6.7	8.0	8.0	5.7		10.9	8.1	6
VTBN-2019-12		6.2		8.6	6.5	8.3	12.2	7.8	8.3	6.0	7.6	8.8	8.5	10.9	8.3	4
VTBN-2019-13	9.3	6.3	11.0	8.7	6.3	9.8	12.8	7.6	7.0	7.0	7.8	8.7	8.2	10.1	8.6	3
VTBN-2019-14	8.5	6.0	13.4	8.0	6.2	7.1	12.9	7.6	6.5	9.5	7.4	9.2	9.0	10.5	8.7	2
VTBN-2019-15	8.8	6.5		9.0	7.2	7.8	11.3	7.7	6.3	8.0	7.4	8.8	8.5	8.8	8.1	6
VTBN-2019-16	8.2	7.0	13.8	8.5	7.5	8.1	12.0	8.4	7.6		7.3	8.3	8.2	10.9	8.9	1
Mean	8.3	6.4	11.8	8.5	6.5	7.7	11.9	7.7	7.1	8.1	7.7	7.5	7.6	9.9	8.2	

Table 16.7 VTBN-2019 (3rd Year): Varietal Trial in Bajra Napier hybrid (Perennial): Plant Height (cm)

Entries	Palam-	Ludh-	Bika-	Ran-	Jor-	Ana-	Rah-	Urulikan-	Rai-	Jabal-	Coimb-	Man-	Vella-	Aver-	Ra-
Entries	pur	iana	ner	chi	hat	nd	uri	chan	pur	pur	atore	dya	yani	age	nk
VTBN-2019-1		163.4	122.2	131.3	164.3	141.1	164.8	175.5	186.0	58.6	175.5	84.0	197.0	147.0	14
VTBN-2019-2		144.3		130.0	184.3	145.3	171.4	178.1	168.4	71.2	185.0	91.4	193.0	151.1	9
VTBN-2019-3	142.3	148.2		123.9	177.5	137.1	146.9	157.9	212.3	55.6	195.5	96.4	211.0	150.4	10
VTBN-2019-4	115.3	141.6	116.6	138.3	196.4	154.9	122.8	162.6	177.5	72.8	190.6	101.0	186.0	144.3	15
VTBN-2019-5		151.3	149.4	180.9	180.4	163.8	158.4	152.1	199.6	65.7	175.0	100.9	223.0	158.4	3
VTBN-2019-6	136.3	155.4	185.8	170.5	191.3	174.4	170.1	172.6	170.4	78.8	180.0	97.0	224.0	162.0	1
VTBN-2019-7	120.3	152.3	217.6	173.1	205.6	162.9	140.2	168.8	144.8	86.1	176.0	102.9	211.0	158.6	2
VTBN-2019-8		122.3		172.1	142.2	156.1	149.5	132.0	191.1	64.3	195.0	120.2	205.0	150.0	11
VTBN-2019-9		144.2	227.6	130.1	172.1	166.8	149.8	171.3	160.7	76.3	188.0	83.6	189.0	155.0	5
VTBN-2019-10		128.6		122.8	176.4	180.7	177.2	161.7	196.3	68.7	162.0	94.8	206.0	152.3	8
VTBN-2019-11	127.7	132.2		149.3	175.9	133.2		137.2	169.1	73.8	180.0	64.6	217.0	141.8	16
VTBN-2019-12		154.2		103.2	225.3	151.1	155.6	184.6	196.2	68.3	172.0	95.5	212.0	156.2	4
VTBN-2019-13	133.7	140.1	128.4	128.1	154.5	166.9	168.5	169.7	173.4	69.7	192.5	85.8	226.0	149.0	13
VTBN-2019-14	137.0	162.3	148.0	203.1	202.1	140.3	169.7	167.0	171.8	65.0	190.5	51.9	195.0	154.1	6
VTBN-2019-15	146.7	131.2			196.4	143.9	173.3	100.8	186.0	67.4	185.5	102.0	216.0	149.9	12
VTBN-2019-16	151.7	145.4	123.6		176.8	155.4	187.1	166.8		64.7	200.5	109.0	208.0	153.5	7
Mean	134.6	144.8	157.7	146.9	182.6	154.6	160.3	159.9	180.2	69.2	184.0	92.6	207.4	152.1	

Table 16.8 VTBN-2019 (3rd Year): Varietal Trial in Bajra Napier hybrid (Perennial): Leaf Stem Ratio

Entries	Palam-	Ludh-	Bika-	Ran-	Jor-	Ana-	Rah-	Urulikan-	Rai-	Jabal-	Coimb-	Man-	Vella-	Aver-	Ra-
Entries	pur	iana	ner	chi	hat	nd	uri	chan	pur	pur	atore	dya	yani	age	nk
VTBN-2019-1		0.72	1.29	0.85	0.86	1.52	0.64	0.82	0.50	0.67	0.41	0.65	0.85	0.81	2
VTBN-2019-2		0.63		0.88	0.88	1.28	0.67	0.56	0.46	0.75	0.36	0.60	0.78	0.71	10
VTBN-2019-3	0.69	0.57		0.77	0.90	1.20	0.60	0.77	0.35	0.65	0.42	0.74	0.53	0.68	11
VTBN-2019-4	0.71	0.52	0.97	0.59	0.96	1.60	0.53	0.82	0.47	0.79	0.40	0.77	0.78	0.76	6
VTBN-2019-5		0.57	1.19	0.78	0.90	1.20	0.82	0.82	0.57	0.71	0.38	0.68	0.67	0.77	5
VTBN-2019-6	0.77	0.69	0.95	0.55	0.94	1.22	0.55	0.59	0.52	0.85	0.36	0.67	0.74	0.72	9
VTBN-2019-7	0.63	0.72	1.45	0.66	0.80	1.19	0.75	0.71	0.53	0.85	0.43	0.64	0.71	0.77	5
VTBN-2019-8		0.85		0.78	0.90	1.19	0.63	0.81	0.54	0.68	0.42	0.78	1.34	0.81	2
VTBN-2019-9		0.63	1.28	0.70	0.88	1.23	0.67	0.71	0.44	0.82	0.39	0.58	1.08	0.78	4
VTBN-2019-10		0.72		0.73	0.89	1.25	0.61	0.81	0.40	0.73	0.40	0.68	0.82	0.73	8
VTBN-2019-11	0.80	0.77		0.66	0.89	1.66		0.76	0.45	0.80	0.41	0.64	0.82	0.79	3
VTBN-2019-12		0.63		0.67	0.88	1.03	0.55	0.81	0.46	0.72	0.36	0.64	0.61	0.67	12
VTBN-2019-13	0.78	0.67	0.93	0.62	0.85	1.37	0.57	0.81	0.38	0.75	0.41	0.60	0.95	0.75	7
VTBN-2019-14	0.73	0.57	0.99	0.79	0.91	1.40	0.55	0.67	0.40	0.70	0.39	0.53	1.11	0.75	7
VTBN-2019-15	0.63	0.75			0.95	1.68	0.59	0.82	0.46	0.71	0.35	0.64	0.62	0.75	7
VTBN-2019-16	0.60	0.67	1.72		0.83	1.73	0.50	0.74		0.69	0.36	0.76	0.44	0.82	1
Mean	0.70	0.67	1.20	0.72	0.89	1.36	0.62	0.75	0.46	0.74	0.39	0.66	0.80	0.76	

Table 16.9 VTBN-2019 (3rd Year): Varietal Trial in Bajra Napier hybrid (Perennial): ADF (%), NDF (%) & IVDMD (%)

Entries	·	ADF	(%)	•		NDF	(%)	•	IVDMD	(%)
Entries	Ludhiana	Palampur	Average	Rank	Ludhiana	Palampur	Average	Rank	Ludhiana	Rank
VTBN-2019-1	50.0		50.0	6	70.4		70.4	6	41.2	10
VTBN-2019-2	50.1		50.1	7	72.8		72.8	12	46.4	3
VTBN-2019-3	46.8	57.4	52.1	10	70.2	68.6	69.4	4	40.6	12
VTBN-2019-4	46.8	54.6	50.7	8	70.7	69.4	70.1	5	40.8	11
VTBN-2019-5	47.8		47.8	3	66.7		66.7	1	45.5	4
VTBN-2019-6	48.0	56.6	52.3	11	73.6	70.6	72.1	11	44.8	5
VTBN-2019-7	46.2	59.4	52.8	12	69.0	68	68.5	2	47.0	2
VTBN-2019-8	43.5		43.5	1	73.6		73.6	13	43.0	7
VTBN-2019-9	48.5		48.5	5	71.7		71.7	9	42.6	8
VTBN-2019-10	46.7		46.7	2	71.4		71.4	8	47.2	1
VTBN-2019-11	49.2	57.8	53.5	14	69.8	71.4	70.6	7	43.8	6
VTBN-2019-12	48.2		48.2	4	71.8		71.8	10	40.3	13
VTBN-2019-13	47.6	58.2	52.9	13	71.3	72.0	71.7	9	40.4	12
VTBN-2019-14	48.9	58.6	53.8	16	73.4	67.8	70.6	7	41.6	9
VTBN-2019-15	48.0	59.4	53.7	15	67.5	69.4	68.5	2	40.8	11
VTBN-2019-16	44.8	57.4	51.1	9	69.8	68.8	69.3	3	40.2	14
Mean	47.6	57.7	50.5		70.9	69.6	70.6		42.9	

FORAGE CROP PRODUCTION

The programme on forage crop production was conducted at 42 locations during Kharif season. In total 10 experiments were conducted, out of which 4 in coordinated, 3 AVT trials and 3 in location specific mode with the aim to generate region as well as location specific forage production technologies for different growing condition.

Research aspect consisted of bio-fortification of annual cereal fodder crops, response of fodder crops to micronutrient management, effect of PGRs and micronutrients on sorghum, feedstuffs for air evacuating method of silage production in polybags, Precision nitrogen management for in forages and nitrogen and cutting management on performance of forage pearl millet varieties. Besides above, advance varietal trials to evaluate the response of promising entries of pearl millet, maize and Dinanath grass to nutrient supplementation was also conducted and reported. From the trials, relevant database generated is presented hereunder;

A. Coordinated Trials

K-20-AST-1a: Response of fodder crops to micronutrient management

[(Table Reference: K-20-AST-1a (a) to (k))]

Locations (5): Rahuri, Bikaner, Imphal, Ranchi and BUAT Banda

Preamble

Low productivity of livestock is mainly due to the poor feed and fodder availability. There is acute deficiency of micronutrients in different soils of various regions, which causes not only low yields but also poor quality of the fodder. Production potential of fodder crops can be enhanced with micronutrient management. Adequate supply of micronutrients is essential for higher yield and quality of fodder crops. Hence, the study on agronomic bio fortification of fodder through micronutrient supplementation was proposed.

A trial was initiated during Kharif 2020 at five locations i.e., Rahuri, Bikaner, Imphal, Ranchi and BUAT Banda, to study the effect of PGRs and micronutrients on growth, yield and quality of Maize. In Rahuri and Banda the trial was conducted on maize, whereas, at Bikaner, Imphal, RanchiBxN hybrids was tested. The treatments included; **T**₁:Absolute control (no fertilizer application), **T**₂; RDF (100:50:50 N:P₂O₅:K₂O kg ha⁻¹) (based on soil test), **T**₃;GRDF (100:50:50 N:P₂O₅:K₂O kg ha⁻¹ + FYM 5 t ha⁻¹), **T**₄; GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹, **T**₅; GRDF + two foliar sprays of government notified multi-micronutrient grade II @ 1% at 30 and 45 DAS and **T**₆; GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹ + two foliar sprays of grade II @ 1% at 30 and 45 DAS. The maize crop was sown at 30 cm x10 cm spacing in 4.0 m x 5.0 m plots. The BN Hybrid was sown at 75 cm x 50 cm spacing in plots. The experiment was laid out in Randomized Block Design with three replications.

Maize

The results indicated that as regards to yields, treatment T₆- GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹+ two foliar sprays of grade II @ 1% at 30 and 45 DAS recorded significantly yield (376.4 & 87.1 q ha⁻¹, respectively) which was 46.5 and 32.6 % higher over T₂; RDF (100:50:50 N:P₂O₅:K₂O kg ha⁻¹), in terms of green and dry matter respectively. Treatment T₆ DAS recorded significantly higher crude protein yield (12.14 q ha⁻¹).

The results indicated that as regards to yields, treatment T₆- GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹+ two foliar sprays of grade II @ 1% at 30 and 45 DAS recorded significantly yield (376.4 & 87.1 q ha⁻¹, respectively) which was 46.5 and 32.6 % higher over T_2 ; RDF (100:50:50 N:P₂O₅:K₂O kg ha⁻¹), in terms of green and dry matter respectively. Treatment T₆ DAS recorded significantly higher crude protein yield (12.14 q ha⁻¹). In terms of quality, treatment T_6 - GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹+ two foliar sprays of grade II @ 1% at 30 and 45 DAS recorded significantly higher L:S ratio, lower ADF and NDF and higher IVDMD (66.4%). Treatment T₆- GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹+ two foliar sprays of grade II @ 1% at 30 and 45 DAS recorded higher Net monetary returns (Rs. 105531 ha⁻¹) and B: C ratio (2.44). The application of micronutrient through multi-micronutrient grade I and foliar sprays of grade II brought significant variation in micronutrient content of plants. The treatment GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹ and T₆- GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹ + two foliar sprays of grade II @ 1% at 30 and 45 DAS recorded higher content of Zn (185.1), Fe (31.5) and Mn (412.4) in plant. The data on pH, EC and organic carbon content in soil was non-significant.

In terms of quality, treatment T_6 - GRDF + soil application of government notified multimicronutrient grade I @ 25 kg ha⁻¹ + two foliar sprays of grade II @ 1% at 30 and 45 DAS recorded significantly higher L:S ratio, lower ADF and NDF and higher IVDMD (66.4%). Treatment T_6 - GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹ + two foliar sprays of grade II @ 1% at 30 and 45 DAS recorded higher Net monetary returns (Rs. 105531 ha⁻¹) and B: C ratio (2.44). The application of micronutrient through multi-micronutrient grade I and foliar sprays of grade II brought significant variation in micronutrient content of plants. The treatment GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹ and T_6 - GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹ + two foliar sprays of grade II @ 1% at 30 and 45 DAS recorded higher content of Zn (185.1), Fe (31.5) and Mn (412.4) in plant. The data on pH, EC and organic carbon content in soil was non-significant.

BxN Hybrid

The results indicated that as regards to yields, treatment T₆- GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹+ two foliar sprays of grade II @ 1% at 30 and 45 DAS recorded significantly yield (690.0 & 149.5 q ha⁻¹, respectively) which was 7.6 and 32.6 % higher over T₂; RDF (100:50:50 N:P₂O₅:K₂O kg ha⁻¹), in terms of green and dry matter respectively. Treatment T₆ DAS recorded significantly higher crude protein yield (17.83 q ha⁻¹). In terms of quality, treatment T₆- GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹+ two foliar sprays of grade II @ 1% at 30 and 45 DAS recorded significantly higher L:S ratio, lower ADF (45.33%) and NDF (53.22%) and higher IVDMD (62.3%). Treatment T₂: RDF (100:50:50 N:P₂O₅:K₂O kg ha⁻¹) recorded higher Net monetary returns (Rs. 140388 ha⁻¹) and B: C ratio (4.52). The application of micronutrient through multi-micronutrient grade I and foliar sprays of grade II brought significant variation in micronutrient content of plants. The treatment GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹ and T₆- GRDF + soil application of government notified multi-micronutrient grade I @ 25 kg ha⁻¹ + two foliar sprays of grade II @ 1% at 30 and 45 DAS recorded higher content of Fe (139.5), Mn (61.1) and Co (9.1) in plant. The data on pH, EC and organic carbon content in soil was nonsignificant.

Table K-20-AST-1a (a): Effect of micronutrient application on biomass yield of fodder crops (q/ha)

Treatment				GFY							DMY				GFY	DMY
	M	nize			BN H	whrid			Maize			BN H	vhrid		/day	/day Hybrid
	Rah-	Ban-	Mean	Ran-	Imp-	Bika-	Mean	Rah-	Ban-	Mean	Imp-	Bika-	Ran-	Mean	Ran-	Ran-
	uri	da		chi	hal	ner		uri	da		hal	ner	chi		chi	chi
T_1	283.6	110.4	197.0	436.7	427.5	120.0	328.1	67.3	11.8	39.6	90.8	20.9	83.0	64.9	1.2	0.23
T_2	368.3	145.3	256.8	1048.7	736.5	139.0	641.4	89.6	18.6	54.1	118.1	22.3	199.3	113.2	2.87	0.55
T_3	403.9	153.7	278.8	1087.0	776.3	156.0	673.1	98.6	20.4	59.5	153.9	28.5	230.8	137.7	2.98	0.63
T_4	484.3	168.3	326.3	1102.3	783.8	156.1	680.7	121.1	26.5	73.8	127.9	28.9	242.5	133.1	3.02	0.66
T_5	447.4	196.1	321.8	1125.7	772.3	178.1	692.0	111.7	33.3	72.5	124.3	31.5	247.8	134.5	3.08	0.68
T_6	527.7	225.0	376.4	1145.3	741.8	183.0	690.0	135.2	39.0	87.1	162.0	34.5	251.9	149.5	3.14	0.69
SE(m) ±	15.0	0.9		24.7	7.4	7.4		5.3	0.2		10.1	2.0	5.2		0.05	0.01
C.D. (P=0.05)	45.1	2.9		76.5	22.3	23.3		16.0	0.6		30.4	6.3	16.5		0.16	0.05
CV%	9.0	9.4		8.3	1.8			10.2	14.0		13.5	20.9	6.2		3.28	4.24

Table K-20-AST-1a (b): Effect of micronutrient application on growth and quality parameters of fodder crops

Treatment		CPY	(q/ha)			CP (%)				Plant He	eight (cm)	
	Maize		BN Hybri	d	Maize	I	3N Hybrid		M	[aize		BN Hybr	rid
	Rah-	Ran-	Imp-	Mean	Rah-	Ran-	Imp-	Mean	Ban-	Rah-	Ran-	Imp-	Bika-
	uri	chi	hal		uri	chi	hal		da	uri	chi	hal	ner
T_1	4.82	5.23	8.78	7.01	7.18	6.31	9.68	8.00	208.4	189.8	57.0	234.4	138.7
T_2	7.04	13.15	11.03	12.09	7.85	6.60	9.33	7.97	262.3	219.0	82.3	246.3	163.0
T ₃	8.18	16.43	14.12	15.28	8.31	7.12	9.18	8.15	270.0	223.3	85.7	195.9	159.4
T_4	10.86	18.60	11.77	15.19	8.98	7.67	9.20	8.44	265.0	267.8	86.7	211.4	161.3
T ₅	9.34	16.40	11.62	14.01	8.38	6.62	9.38	8.00	267.4	233.8	88.3	239.1	156.4
T_6	12.14	20.97	14.68	17.83	8.99	8.32	9.08	8.70	278.1	275.5	90.3	219.8	167.2
SE(m) ±	0.43	0.33	0.90		0.16	0.07	0.25		11.5	6.5	2.9	11.5	9.6
C.D. (P=0.05)	1.30	1.05	2.72		0.48	0.22	0.75		36.7	19.6	9.1	34.8	NS
CV%	9.87	3.78	13.00		3.81	1.71	4.64		7.7	5.5	6.9	8.9	

Table K-20-AST-1a (c): Effect of micronutrient application on growth offodder crops

Treatment		Lea	f Stem Ratio)		N	lumber of leav	es/plant at harv	vest
	Maize		BN H	ybrid			BN 1	Hybrid	
	Rah-	Ran-	Imp-	Bika-	Mean	Ran-	Imp-	Bika-	Mean
	uri	chi	hal	ner		chi	hal	ner	
T_1	0.49	0.26	0.60	0.62	0.49	8.00	17.25	13.59	12.95
T_2	0.51	0.28	0.80	0.66	0.58	12.67	16.42	13.59	14.23
T_3	0.52	0.27	0.80	0.69	0.59	14.00	13.33	11.47	12.93
T_4	0.60	0.27	1.18	0.66	0.70	16.67	16.67	15.54	16.29
T_5	0.57	0.26	0.80	0.65	0.57	15.67	17.08	13.08	15.28
T_6	0.62	0.26	0.73	0.86	0.62	16.00	22.83	14.95	17.93
SE(m) ±	0.01	0.01	0.10	0.08		0.87	3.00	0.89	
C.D. (P=0.05)	0.04	NS	0.31	0.24		2.77	NS	2.79	
CV%	4.83	8.19	21.85			10.88	30.13		

Table K-20-AST-1a (d): Effect of micronutrient application on quality parameters of fodder crops

Treatment		M	aize			BN 1	Hybrid	
	DM (%)	ADF (%)	NDF (%)	IVDMD (%)	DM (%)	ADF (%)	NDF (%)	IVDMD (%)
		Ra	huri		Bikaner		Ranchi	
T_1	23.74	32.43	58.53	60.8	17.38	54.24	72.52	46.08
T_2	24.41	31.93	57.6	62.58	16.07	53.86	71.5	46.43
T_3	24.47	31.08	57	63.8	18.27	53.21	70.26	47.13
T_4	25.0	29.6	51.83	65.52	18.53	46.24	64.19	52.34
T_5	24.97	30.9	53.9	64.14	17.65	47.21	65.19	51.71
T_6	25.55	29.38	50.9	66.41	18.9	45.33	62.26	53.22
SE(m) ±	0.59	0.36	0.95	0.64	0.77	0.59	0.56	0.23
C.D. (P=0.05)	NS	1.08	2.86	1.92	2.43	1.9	1.78	0.73
CV%	4.82	2.33	3.46	2		2.06	1.42	0.8

Table K-20-AST-1a (e): Effect of micronutrient application on economics of fodder crops

Treatment		Gross Mone	tary Return			Net Mon	etary Return	
	Maize		BN Hybrid		Maize		BN Hybrid	
	Rahuri	Ranchi	Imphal	Mean	Rahuri	Ranchi	Imphal	Mean
T_1	56714	65500	106875	86187.5	18379	42500	80947	61724
T_2	73658	157300	184125	170712.5	29478	129300	151475	140388
T_3	80787	163050	194063	178556.5	28607	132050	148913	140482
T_4	96868	165350	195938	180644.0	43188	132850	158288	145569
T ₅	89483	168850	193063	180956.5	35883	133850	158413	146132
T_6	105531	171800	185438	178619.0	50431	133800	145788	139794
SE(m) ±	4041.0	2759.0	1845.0		4041.0	2759.0	1845.0	
C.D. (P=0.05)	12182.0	8806.0	5562.0		12182.0	8806.0	5562.0	
CV%	9.6	3.0	2.0		23.6	4.1	2.0	

Table K-20-AST-1a (f): Effect of micronutrient application on economics of fodder crops

Treatment		B: C Ratio												
	Rahuri	Banda	Mean	Ranchi	Imphal	Bikaner	Mean							
T_1	1.48	3.60	2.54	2.85	4.12	2.25	3.07							
T_2	1.67	3.10	2.39	5.62	5.64	2.29	4.52							
$\overline{T_3}$	1.55	2.28	1.92	5.26	4.30	2.16	3.91							
$\overline{T_4}$	1.80	2.27	2.04	5.09	5.20	2.50	4.26							
T ₅	1.67	2.76	2.22	4.82	5.57	2.78	4.39							
T_6	1.92	2.96	2.44	4.52	4.68	2.79	4.00							
SE(m) ±	0.08	0.23		0.09	0.05	0.12								
C.D. (P=0.05)	0.23	0.73		0.30	0.16	0.37								
CV%	9.53	14.06		3.53	1.92									

Table K-20-AST-1a (g): Effect of micronutrient application on nutrient availability in soil at Rahuri

Treatment			Se	oil Analysis			Micro n	utrients in s	soil after th	ne harvest (ppm)
	pН	EC	OC (%)	Available N	Available P	Available K	Treatments	Zn	Fe	Mn	Cu
T_1	8.54	0.31	0.51	132.1	14.40	353.0	T_1	0.57	3.52	12.19	1.16
T_2	8.53	0.31	0.52	161.1	17.20	378.5	T_2	0.73	8.32	19.90	1.34
T_3	8.48	0.32	0.51	159.5	16.90	375.3	T_3	0.31	6.09	25.95	1.24
T_4	8.48	0.33	0.52	147.3	16.58	365.5	T_4	0.27	6.26	13.42	1.27
T_5	8.52	0.32	0.53	153.2	16.87	370.3	T_5	0.25	5.10	10.39	1.18
T_6	8.47	0.33	0.54	139.1	15.65	360.8	T_6	0.35	6.85	11.72	1.26
SE(m) ±	0.02	0.01	0.01	4.05	0.39	4.11					
C.D. (P=0.05)	NS	NS	NS	12.22	1.18	12.38	Initial	0.54	3.97	13.14	1.29
CV%	0.57	8.07	4.06	5.45	4.82	2.24					

Table-20-AST-1a (h): Effect of micronutrient on nutrient in soil after harvest in BxN hybrid at Imphal

Treatment	Soil prop	erties	Availab	le nutrient	(kg/ha)	Zn (mg/kg)	Fe (mg/kg)	Mn (mg/kg)	Co (mg/kg)
	OC (%)	pН	N	P	K				
T1	1.03	5.12	273.12	12.80	265.20	0.492	57.75	5.730	0.744
T2	1.06	5.18	281.33	14.30	258.70	0.356	53.04	5.364	0.594
T3	1.18	5.10	289.21	14.80	253.80	0.312	39.78	3.602	0.480
T4	1.09	5.21	292.18	15.90	269.30	0.302	55.28	4.764	0.666
T5	1.04	5.14	283.09	13.90	253.50	0.290	26.78	1.704	0.428
T6	1.07	5.13	272.03	14.30	260.80	2.612	54.14	6.514	1.396
Initial	1.28	5.20	290.70	16.50	285.30				

Table-20-AST-1a (i): Effect of micronutrient on plant micro nutrient parameters after harvest at Imphal

Treatment	Zn (mg/kg)	Fe (mg/kg)	Mn (mg/kg)	Co (mg/kg)
T1	46.000	111.625	33.625	4.900
T2	36.000	84.250	27.625	4.850
T3	57.250	133.875	29.125	3.825
T4	82.625	107.875	43.875	3.975
T5	42.750	119.125	39.375	7.075
T6	61.250	139.500	61.125	9.075

Table-20-AST-1a (j): Effect of micronutrient on plant micro nutrient content at Banda

Treatment	Zn (ppm)	Fe (ppm)	Mn (ppm)	Co (ppm)
T1	56.92	367.61	27.37	5.51
T2	55.71	626.21	28.46	5.73
T3	52.63	523.58	27.54	4.27
T4	83.19	614.83	32.96	5.24
T5	61.61	439.08	22.87	4.61
T6	85.17	412.41	31.55	6.27
SE(m) ±	1.92	35.36	1.07	0.45
C.D. (P=0.05)	6.15	112.86	3.43	N/A
CV%	5.07	12.31	6.54	14.88

Table-20-AST-1a (k): Effect of micronutrients on micronutrient content in crop and soil at Bikaner

Treatments	Micron	utrient con	tent in crop	(ppm)	Micronut	rient cont	tent in soi	l (ppm)
	Zn	Fe	Mn	Co	Zn	Fe	Mn	Co
Absolute control	19.26	199.23	30.65	2.10	3.20	4.35	4.45	0.07
RDF (100:50:50 N:P ₂ O ₅ :K ₂ O kg ha ⁻¹)	23.36	189.08	28.93	2.00	3.15	4.07	4.81	0.07
GRDF (100:50:50 N:P ₂ O ₅ :K ₂ O kg ha ⁻¹ + FYM 5 t ha ⁻¹)	28.92	174.30	34.78	2.05	2.77	3.88	4.37	0.06
GRDF + soil application of government notified multi-								
micronutrient grade I @ 25 kg ha ⁻¹	23.19	195.08	35.28	2.28	2.82	3.69	4.13	0.07
GRDF + two foliar sprays of government notified multi-								
micronutrient grade II @ 1% at 30 and 45 DAS.	31.06	198.22	43.40	2.55	2.45	4.09	4.04	0.07
GRDF + soil application of government notified multi-								
micronutrient grade I @ 25 kg ha ⁻¹ + two foliar sprays of								
grade II @ 1% at 30 and 45 DAS.	20.60	174.35	35.98	2.23	2.41	3.67	3.87	0.07
SE(m) ±	1.22	4.69	1.26	0.16	0.13	0.27	0.14	0.01
C.D. (P=0.05)	3.85	14.77	3.97	NS	0.40	NS	0.45	NS
Micronutrient content in soil (ppm) before sowing					4.07	4.08	6.08	0.06

K-20-AST-1 (b): Yield enhancement and bio-fortification of *kharif* forages with PGRs and micronutrients

[(Table Reference: K-20-AST-1b (a) to (f)]

Locations (4): Palampur, Srinagar, Mandya and Ayodhya

Preamble

Preamble

About 43% and 18% of Indian soils have been reported to be deficient in Zn and B status, respectively. Zinc is known to improve the metabolism of the plant and yield; whereas boron is improves the productivity by triggering source and sink relationship. Boron deficiency affects vegetative and reproductive growth of plants, resulting in inhibition of cell expansion and death of meristem. Plant growth regulators and micronutrients in minute quantities play an important role in enhancing growth and development of plants. PGRs like salicylic acid and triacontonal are easily available in the market and are in use with other crops. Therefore, it is proposed to assess the effect PGRs and micronutrients (Zinc and boron) on productivity of forages.

A trial was initiated during *Kharif* 2020 at four locations to study the effect of PGRs and micronutrients on growth, yield and quality of sorghum for three years. The objective of the study was to assess the effect of PGRs and micronutrients on herbage yield and quality, soil properties and economics. The treatments included; T₁: Triacontanol 10 ppm at 30 DAS (foliar spray), T₂: Salicylic acid 100 ppm at 30 DAS (foliar spray), T₃: 5 kg Zn/ha soil application, T₄: 2 kg B/ha soil application, T₅: 5 kg Zn + 2 kg B/ha soil application, T₆: 5 kg Zn/ha soil application + Triacontanol 10 ppm at 30 DAS foliar spray, T₇: 5 kg Zn/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray, T₈: 2 kg B/ha soil application + Triacontanol 10 ppm at 30 DAS foliar spray, T₉: 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray, T₁₀: 5 kg Zn + 2 kg B/ha soil application + Triacontanol 10 ppm at 30 DAS foliar spray, T_{11:} 5 kg Zn + 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray and T₁₂: Water spray at the time of PGR application. Zn and B were applied at the time of sowing in the soil. The forage sorghum was grown at Palampur, Srinagar, and Ayodhya, whereas, maize was the test crop at Mandya The crop was raised with recommended package of practices. In treatments, where zinc was not a treatment, an amount of sulphur through gypsum equivalent to sulphate supplied with 5 kg ZnSO₄ was applied to compensate. Zn and B were applied at the time of sowing. The crop was sown in 30 cm apart lines. The trial was laid out in Randomized Block Design with three replications.

Results

The data revealed that, on location mean basis soil application of 5 kg Zn + 2 kg B/ha + triacontanol (10 ppm) as foliar spray at 30 DAS (T_{10}) significantly recorded higher green fodder (464.1 q/ha), dry matter (122.7 q/ha) and crude protein yield (9.8 q/ha). The same treatment recorded higher plant height (208.4cm).

The results revealed that on centre mean basis, at Palampur soil application of 5 kg Zn + 2 kg B/ha + triacontanol (10 ppm) as foliar spray at 30 DAS (T_{10}) significantly recorded higher green fodder, dry matter and crude protein yield (320.9 q, 79.1 q and 7.1 q respectively). The same treatment recorded higher plant height (155.0cm) and leaf stem ratio (0.60).

At Srinagar centre, soil application of 5 kg Zn + 2 kg B/ha + triacontanol (10 ppm) as foliar spray at 30 DAS (T_{10}) significantly recorded higher green fodder, dry matter and crude protein yield (472.3 q, 118.8 q and 10.5 q respectively). The same treatment recorded higher plant height (210.6cm) and leaf stem ratio (0.70).

At Ayodhya centre also, soil application of 5 kg Zn + 2 kg B/ha + triacontanol (10 ppm) as foliar spray at 30 DAS (T_{10}) significantly recorded higher green fodder, dry matter and crude protein yield (560.5 q, 160.1 q and 12.9 q respectively). The same treatment recorded higher plant height (206.2cm) and leaf stem ratio (0.70).

At Mandy centre, soil application of 5 kg Zn + 2 kg B/ha + salicylic acid (100 ppm) as foliar spray at 30 DAS (T_{11}) significantly recorded higher green fodder, dry matter and crude protein yield (514.5 q, 137.8 q and 10.9 q respectively) in fodder maize. The same treatment recorded higher plant height (278.4cm) and leaf stem ratio (0.40).

Table K-20-AST-1b (a): Effect of PGRs and micronutrients on green fodder yield of sorghum

Treatments	J	Green fod	der yield (q/ha)		
	Palampur	Srinagar	Ayodhya	Mean	Mandya
		Forage sorghum			Maize
T ₁ : Tricontanol 10 ppm at 30 DAS	250.0	380.4	522.6	384.3	378.3
T ₂ : Salicylic acid 100 ppm at 30 DAS (foliar spray)	261.7	387.1	498.1	382.3	402.7
T ₃ : 5 kg Zn/ha soil application	243.1	366.2	518.1	375.8	431.5
T ₄ : 2 kg B/ha soil application	246.8	370.4	412.1	343.1	437.9
T ₅ : 5 kg Zn + 2 kg B/ha soil application	259.2	386.6	531.4	392.4	481.0
T ₆ : 5 kg Zn/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	265.4	440.0	540.6	415.3	445.7
T ₇ : 5 kg Zn/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	289.9	444.2	522.0	418.7	457.7
T ₈ : 2 kg B/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	290.1	446.6	510.1	415.6	469.5
T ₉ : 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	300.3	448.3	501.4	416.7	472.4
T _{10:} 5 kg Zn + 2 kg B/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	320.9	472.3	560.5	451.2	502.9
T _{11:} 5 kg Zn + 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	306.1	466.1	540.1	437.4	514.5
T _{12:} Water spray at the time of PGR application	209.9	331.2	457.1	332.7	345.3
SE(m) ±	12.93	6.17	20.19		23.94
C.D. (P=0.05)	38.16	18.53	60.20		70.66

Table K-20-AST-1b (b): Effect of PGRs and micronutrients on dry matter yield and of sorghum

Treatments		D	ry Matter yield	(q/ha)	
	Palampur	Srinagar	Ayodhya	Mean	Mandya
	F	orage Sorghum			Maize
T ₁ : Tricontanol 10 ppm at 30 DAS	60.66	93.22	146.10	99.99	83.6
T ₂ : Salicylic acid 100 ppm at 30 DAS (foliar spray)	63.54	95.8	138.49	99.28	100.2
T ₃ : 5 kg Zn/ha soil application	57.58	89.21	144.71	97.17	106.2
T ₄ : 2 kg B/ha soil application	60.02	92.11	137.26	96.46	102.3
T ₅ : 5 kg Zn + 2 kg B/ha soil application	63.22	95.1	151.62	103.31	106.7
T ₆ : 5 kg Zn/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	67.13	113.52	145.84	108.83	98.1
T ₇ : 5 kg Zn/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	71.88	111.66	141.63	108.39	107
T ₈ : 2 kg B/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	69.99	108.42	14.46	64.29	114.5
T ₉ : 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	74.02	113.63	138.12	108.59	109.1
T _{10:} 5 kg Zn + 2 kg B/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	79.08	118.8	160.12	119.33	132.6
T _{11:} 5 kg Zn + 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	76.16	118.37	148.15	114.23	137.8
T_{12} : Water spray at the time of PGR application	51.99	83.45	120.28	85.24	87.1
SE(m) ±	3.19	1.54	5.93		6.23
C.D. (P=0.05)	9.41	4.67	16.14		18.38

Table K-20-AST-1b (c): Effect of PGRs and micronutrients on crude protein yield (q/ha) of sorghum

Treatments	•	· \ 1	rotein Yield (q/h	a)	
	Palampur	Srinagar	Ayodhya	Mean	Mandya
	l	Forage sorghum			Maize
T ₁ : Tricontanol 10 ppm at 30 DAS	5.39	7.74	10.55	7.89	7.4
T ₂ : Salicylic acid 100 ppm at 30 DAS (foliar spray)	5.72	7.76	9.61	7.70	7.3
T ₃ : 5 kg Zn/ha soil application	5.30	7.43	10.35	7.69	7.7
T ₄ : 2 kg B/ha soil application	5.29	7.42	9.61	7.44	7.5
T ₅ : 5 kg Zn + 2 kg B/ha soil application	5.52	7.73	10.99	8.08	7.9
T ₆ : 5 kg Zn/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	6.06	9.39	10.67	8.71	8.0
T ₇ : 5 kg Zn/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	6.32	9.25	10.19	8.59	8.6
T ₈ : 2 kg B/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	6.44	9.27	10.04	8.58	8.6
T ₉ : 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	6.70	9.37	9.14	8.40	8.0
T _{10:} 5 kg Zn + 2 kg B/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	7.11	10.50	12.88	10.16	9.8
T _{11:} 5 kg Zn + 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	7.01	10.28	10.88	9.39	9.8
T _{12:} Water spray at the time of PGR application	4.43	7.05	8.42		6.6
SE(m) ±	0.31	0.34	0.55		0.4
C.D. (P=0.05)	0.92	1.02	1.76		1.1

Table K-20-AST-1b (d): Effect of PGRs and micronutrients on crude protein content of sorghum

Treatments			de Protein (ADF (%)	NDF (%)
	Palampur	Srinagar	Ayodhya	Mean	Mandya	Ayodhya	Ayodhya
	For	age sorghu	m		Maize	Forage s	orghum
T ₁ : Tricontanol 10 ppm at 30 DAS	8.87	8.85	7.22	8.31	7.0	40.06	62.3
T ₂ : Salicylic acid 100 ppm at 30 DAS (foliar spray)	9.00	8.75	6.95	8.23	6.3	37.4	60.45
T ₃ : 5 kg Zn/ha soil application	9.20	9.04	7.15	8.46	7.4	39.26	61.96
T ₄ : 2 kg B/ha soil application	8.80	8.40	7.00	8.07	7.4	37.5	60.60
T ₅ : 5 kg Zn + 2 kg B/ha soil application	8.73	8.48	7.25	8.15	7.0	40.9	62.90
T ₆ : 5 kg Zn/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	9.00	8.84	7.32	8.39	6.1	41.28	63.50
T ₇ : 5 kg Zn/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	8.80	8.75	7.20	8.25	7.9	40.0	62.20
T ₈ : 2 kg B/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	9.20	9.09	7.15	8.48	7.4	40.2	61.86
T ₉ : 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	9.07	8.52	6.98	8.19	6.1	38.6	60.9
T _{10:} 5 kg Zn + 2 kg B/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	9.00	9.13	7.55	8.56	6.6	41.56	64.3
T _{11:} 5 kg Zn + 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	9.20	9.03	7.35	8.53	7.9	41.5	63.5
T ₁₂ : Water spray at the time of PGR application	8.53	8.31	7.00	7.95	7.4	36.9	60.2
SE(m) ±	0.16	NS	0.00		0.3	1.59	1.63
C.D. (P=0.05)	NS	NS	NS		1.0	NS	NS

Table K-20-AST-1b (e): Effect of PGRs and micronutrients on growth parameters of sorghum

Treatments		Plant Height (
	Palampur	Srinagar	Ayodhya	Mandya
		Forage sorghum		Maize
T ₁ : Tricontanol 10 ppm at 30 DAS	131.6	170.87	192.77	231.5
T ₂ : Salicylic acid 100 ppm at 30 DAS (foliar spray)	133.3	173.91	187.40	236.0
T ₃ : 5 kg Zn/ha soil application	128.2	161.55	189.10	244.9
T ₄ : 2 kg B/ha soil application	129.4	152.30	180.13	239.2
T ₅ : 5 kg Zn + 2 kg B/ha soil application	130.1	168.77	191.63	251.2
T ₆ : 5 kg Zn/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	135.1	175.64	161.67	247.4
T ₇ : 5 kg Zn/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	134.6	172.19	190.13	259.1
T ₈ : 2 kg B/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	138.6	178.33	189.12	241.0
T ₉ : 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	138.6	174.10	189.00	256.1
$T_{10:}$ 5 kg Zn + 2 kg B/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	155.0	210.61	206.17	262.0
$T_{11:}$ 5 kg Zn + 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	145.0	203.77	198.40	278.4
T _{12:} Water spray at the time of PGR application	125.5	152.80	166.46	217.9
SE(m) ±	3.34	11.75	9.10	12.9
C.D. (P=0.05)	9.85	11.16	25.10	37.7

Table K-20-AST-1b (f): Effect of PGRs and micronutrients on quality of sorghum

Treatments		Leaf S	tem Ratio	
	Palampur	Srinagar	Ayodhya	Mandya
	For	rage sorghu	m	Maize
1: Tricontanol 10 ppm at 30 DAS	0.41	0.62	0.69	0.32
T2: Salicylic acid 100 ppm at 30 DAS (foliar spray)	0.45	0.66	0.67	0.27
T3: 5 kg Zn/ha soil application	0.47	0.66	0.7	0.34
T4: 2 kg B/ha soil application	0.49	0.69	0.69	0.3
T5: 5 kg Zn + 2 kg B/ha soil application	0.5	0.7	0.72	0.32
T6: 5 kg Zn/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	0.55	0.72	0.71	0.32
T7: 5 kg Zn/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	0.5	0.72	0.67	0.31
T8: 2 kg B/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	0.55	0.73	0.66	0.32
T9: 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	0.53	0.72	0.67	0.32
T10: 5 kg Zn + 2 kg B/ha soil application + triacontanol 10 ppm at 30 DAS foliar spray	0.58	0.74	0.7	0.33
T11: 5 kg Zn + 2 kg B/ha soil application + salicylic acid 100 ppm at 30 DAS foliar spray	0.6	0.74	0.73	0.36
T12: Water spray at the time of PGR application	0.63	0.77	0.68	0.33
SE(m) ±	0.02	NS	0.03	0.02
C.D. (P=0.05)	0.05	NS	NS	0.05

K-21-AST-7: Effect of nitrogen and cutting management on performance of forage pearl millet varieties

[Table Reference: K-21-AST-7 (a) to (h)]

Locations: Hyderabad, Raipur, Pusa, Ludhiana, Jabalpur and Varanasi

An experiment was started during *Kharif 2020* at Hyderabad, Raipur, Pusa, Ludhiana, Jabalpur and Varanasi centre in coordinated mode to study the effect of nitrogen and cutting management on yield and economics of new pearl millet varieties for prolonged quality fodder availability period. All possible combinations of four pearl millet varieties (TSFB 15-4, TSFB 15-8, MotiBajra and BAIF Bajra-1) with two nitrogen levels (80 and 120 kg/ha) and two cutting management two cuts and three cuts at different intervals to harvest maximum quality fodder yield was conducted in split plot design with three replication. For two cutting system, first cut was taken at 60 days after sowing and second cut at 50% flowering. In three cutting management system, first cut was done at 50 days after sowing, second at 35 after first cut and third cut was taken at 50% flowering. Experiment was conducted to evaluate two cut and three cut for maximizing green fodder yield and prolonging green fodder availability.

Among varieties, BAIF Bajra-1 produced maximum green fodder yield at Raipur and Pusa. Whereas, at Ludhiana, Jabalpur and Varanasi variety Moti Bajra produced maximum green fodder yield. At Hyderabad center, variety TSFB 15-8 produced maximum green fodder. On locational mean basis, Moti Bajra produced maximum green and dry fodder yield (636.9 and 158.1 q/ ha). Application of 120 kg/ha nitrogen produced maximum green and dry fodder yield. Three cut at different interval produced maximum green fodder and dry fodder yield (612.4 and 139.6 q/ ha) on locational mean basis. Results of economics shows that maximum gross return, net return and B:C ratio was achieved with variety Moti Bajra with application of 120 kg/ha nitrogen and three cuts at different intervals *i.e.* first at 50 days after sowing, second at 35 after first cut and last cut at 50% flowering.

Table: K-21-AST-7 (a): Effect of nitrogen and cutting management on biomass yield(q/ha)of forage Pearl Millet varieties

Treatments	•				dder yield						Dry mat	ter yield		
	Rai-	Hydera-	Pu-	Ludh-	Jabal-	Vara-	Mean	Rai-	Hydera-	Pu-	Ludh-	Jabal-	Vara-	Mean
	pur	bad	sa	iana	pur	nasi		pur	bad	sa	iana	pur	nasi	
Varieties														
TSFB 15-4	387	704	570	467	594	448.6	528.4	74.9	182.1	112	88.7	155.9	156.9	128.4
TSFB 15-8	563	770	663	594	668	523.6	630.3	109.8	191.7	133.8	112.4	211.7	167.8	154.5
Moti Bajra	568	666	688	646	689	564.2	636.9	115.8	172.2	139.7	120.3	214.9	185.7	158.1
BAIF Bajra-1	628	620	692	501	633	474.6	591.4	129.8	152.8	138.8	92.4	197.7	168.3	146.6
SE(m) ±	15.5	19.4	14.9	9.5	12.4	19.45		3.87	6.8	3.9	1.8	3.56	4.55	
C.D. (P=0.05)	53.6	57.5	51.6	32.7	39.6	67.4		13.37	19.8	13.5	6.4	9.85	15.76	
Nitrogen levels														
80 kg/ha	511	664	604	515	633	449.4	562.7	102	166.7	113.3	90.8	195	144.5	135.4
120 kg/ha	561	716	702	589	661	556.0	630.8	113.1	182.7	148.9	116.1	205.4	169.8	156.0
SE(m) ±	4.9	14	10.5	8	9.4	14.16		1.51	4.8	2.2	1.5	2.36	4.76	
C.D. (P=0.05)	14.2	40.7	30.6	23.2	24.5	46.21		4.43	14	6.3	4.5	6.44	15.53	
Cutting manage	ment													
Two cuts	522	615	643	574	613	497.1	577.4	101.6	161.2	132.3	110.1	135.6	155.36	132.7
Three cuts	550	765	663	530	658	508.3	612.4	113.6	188.2	129.9	96.8	150	158.97	139.6
SE(m) ±	4.9	14	10.5	8	9.4	11.07		1.51	4.8	2.2	1.5	3.22	2.79	
C.D. (P=0.05)	14.2	40.7	NS	23.2	27.5	33.18		4.43	14	NS	4.5	9.52	8.37	
Interaction														
AXBXC	NS	NS	NS			NS		NS	NS	NS		-	NS	

Table K-21-AST-7 (b): Effect of nitrogen and cutting management on economics of forage Pearl Millet varieties

	Cost	of cultiva	ation (Rs.	./ha)		Gross	return (R	s./ha)			Net	return (Rs	s./ha				B:C ratio		
Treatments	Rai-	Pu-	Vara-	Mean	Rai-	Pusa	Jabal-	Vara-	Mean	Rai-	Pusa	Jabal-	Varan	Mean	Rai-	Pusa	Jabal-	Vara	Mean
	pur	sa	nasi		pur		pur	nasi		pur		pur	asi		pur		pur	nasi	
Varieties																			
TSFB 15-4	23585	33371	21150	26035	48420	85433	59363	53832	61762	24835	52062	37127	32682	36677	2.10	2.60	2.70	1.55	2.24
TSFB 15-8	23585	33371	21150	26035	70365	99399	66775	62832	74843	46780	66028	43810	41682	49575	3.00	3.00	2.90	1.97	2.72
Moti Bajra	23585	33371	21150	26035	70988	103242	68853	67704	77697	47403	69871	46617	46554	52611	3.00	3.10	3.10	2.20	2.85
BAIF Bajra-1	23585	33371	21150	26035	78553	103777	63263	56952	75636	54968	70406	41027	35802	50551	3.30	3.10	2.90	1.69	2.75
SE(m) ±	-	-		-	1945	2239	-			1945	2239	-			0.08	0.07	-		
C.D. (P=0.05)	-	-		-	6714	7747	-			6714	7747	-			0.28	0.25	-		
Nitrogen levels																			
80 kg/ha	23279	33131	20945	25785	63923	90592	63263	53930	67927	52449	57461	40701. 5	32985	45899	2.70	2.80	2.80	1.57	2.47
120 kg/ha	23893	33611	21355	26286	70240	105333	66083	66726	77096	57486	71722	42829. 5	45371	54352	2.90	3.20	2.80	2.12	2.76
SE(m) ±	-	-		-	610	1570	-			610	1570	-			0.02	0.05	-		
C.D. (P=0.05)	-	-		-	1781	4583	-			1781	4583	-			0.07	0.14	-		
Cutting manager	nent																		
Two cuts	22920	29682	20900	24501	65336	96477	61252	59654	70680	42416	66795	38731	39154	46774	2.90	3.30	2.70	1.87	2.69
Three cuts	24250	37060	21400	27570	68827	99448	65834	61002	73778	44577	62388	42708	39202	47219	2.80	2.70	2.90	1.83	2.56
SE(m) ±	-	-	-	-	610	1570	-	-	-	610	1570	-	-	-	0.02	0.05	-	-	
C.D. (P=0.05)	-	-	-	-	1781	NS	-	-	-	1781	NS	-	-	-	NS	0.14	-	-	

Table K-21-AST-7 (c): Effect of nitrogen and cutting management on nutrient uptake of forage Pearl Millet varieties

Treatments		Total N	Uptake (l	kg/ha)			Total P U _l	otake (kg/ha))	Total K Uptake (kg/ha)				
	Raipur	Hyderabad	Pusa	Jabalpur	Mean	Raipur	Pusa	Jabalpur	Mean	Raipur	Pusa	Jabalpur	Mean	
Varieties														
TSFB 15-4	109.0	221.1	132.3	191.7	163.5	27.0	41.1	46.8	38.3	55.2	82.9	95.1	77.7	
TSFB 15-8	177.5	218.8	166.3	260.4	205.8	42.8	52.2	63.5	52.8	90.6	110.7	129.1	110.1	
Moti Bajra	176.7	183.1	176.3	264.4	200.1	49.2	59.5	64.5	57.7	95.9	117.3	131.1	114.8	
BAIF Bajra-1	197.0	156.6	174.9	243.2	192.9	61.3	65.8	59.3	62.1	113.4	121.5	120.6	118.5	
SE(m) ±	8.1	8.4	5.1	0.9		2.0	1.8	1.0		4.5	4.5	0.9		
C.D. (P=0.05)	28.0	24.3	17.8	2.3		7.0	6.1	2.3		15.4	15.4	2.9		
Nitrogen levels														
80 kg/ha	158.5	178.8	137.0	239.9	178.6	40.7	44.6	58.5	47.9	81.6	90.2	119.0	96.9	
120 kg/ha	171.6	211.0	187.9	252.6	205.8	49.5	64.7	61.6	58.6	95.9	126.0	125.3	115.7	
SE(m) ±	3.0	5.9	2.9	0.2		0.8	1.1	0.4		1.8	2.2	0.9		
C.D. (P=0.05)	8.9	17.2	8.6	0.7		2.3	3.1	1.1		5.3	6.5	2.2		
Cutting manage	ement													
Two cuts	154.9	187.1	166.6	166.7	168.8	43.0	55.8	40.7	46.5	84.8	110.1	82.7	92.5	
Three cuts	175.2	202.7	158.4	184.5	180.2	47.2	53.5	45.0	48.6	92.7	106.1	91.5	96.8	
SE(m) ±	3.0	5.9	2.9	0.2		0.8	1.1	0.4		1.8	2.2	0.6		
C.D. (P=0.05)	8.9	NS	NS	0.7		2.3	NS	1.1		5.3	NS	1.2		

Table K-21-AST-7 (c): Cut wise green, dry and productivity of forage pearl millet varieties as affected at Raipur

Treatments		en fodder yield			matter yield (c		Per Day	Per Day
	First Cut	Second Cut	Third Cut	First Cut	Second Cut	Third Cut	productivity q/ha/day GFY	productivity q/ha/day DFY
Varieties								
TSFB 15-4	159.25	203.83	49.33	31.72	38.29	9.55	3.38	0.65
TSFB 15-8	259.83	259.33	86.66	50.93	50.70	16.39	4.93	0.95
Moti Bajra	313.33	215.15	78.66	65.02	42.78	15.55	4.95	0.99
BAIF Bajra-1	287.33	298.00	85.33	59.47	61.99	16.90	5.48	1.13
SE(m) ±	10.16	7.05	4.29	1.88	1.91		0.13	0.03
C.D. (P=0.05)	3.08	24.35	15.16	6.52	6.61		0.46	0.11
Nitrogen levels								
80 kg/ha	238.33	237.29	71.33	55.89	46.72	13.72	4.47	0.97
120 kg/ha	271.54	250.87	78.66	63.04	50.15	30.95	4.91	0.90
SE(m) ±	3.71	3.23	2.32	1.10	1.02		0.04	0.01
C.D. (P=0.05)	10.84	9.43	NS	3.21	3.00		0.11	0.04
Cutting manageme	ent							
Two cuts	292.37	230.15		57.39	44.20		4.97	0.97
Three cuts	217.50	258.00	74.8	46.19	52.68	14.60	4.40	0.90
SE(m) ±	3.71	3.23		1.10	1.02		0.04	0.01
C.D. (P=0.05)	10.84	9.43		3.12	3.00		0.11	0.04
Interaction								
AXBXC	NS	NS		NS	NS		NS	NS

Table K-21-AST-7 (d): Cut wise GFY and DFY of forage pearl millet varieties at Hyderabad

Treatment	G	reen Fodder Yield (d	q ha ⁻¹)	I	Ory Matter Yield(q ha	1-1)
	First Cut	Second Cut	Third Cut	First Cut	Second Cut	Third Cut
V ₁ : TSFB15-4	454.7	306.9	62.8	96.9	69.8	15.4
V ₂ : TSFB15-8	409.1	327.1	85.5	96.3	75.1	20.2
V ₃ : Moti Bajra	365.4	291.9	64.7	86.8	67.3	18.0
V ₄ : BAIFBajra-1	358.3	248.3	62.1	82.3	54.6	15.7
SE(m) ±	12.1	13.4	5.5	4.2	3.4	1.5
C.D. (P=0.05)	35.0	38.9	16.0	NS	9.8	NS
N ₁ : 80 Kg ha ⁻¹	380.9	272.7	71.9	86.5	62.2	17.9
N ₂ : 120 Kg ha ⁻¹	412.7	314.3	65.6	94.7	71.2	16.7
SE(m) ±	8.6	9.5	3.9	2.9	2.4	1.9
C.D. (P=0.05)	24.7	27.5	NS	NS	6.9	NS
C ₁ : Two Cuts	408.9	294.7	0	94.1	67.1	0
C ₂ : Three Cuts	384.7	292.4	137.0	87.1	66.3	34.7
SE(m) ±	8.5	9.5	3.9	2.9	2.4	1.0
C.D. (P=0.05)	NS	NS	11.3	NS	NS	3.0
Interactions						
$V \times N \times C$: $SE(m) \pm$	24.7	26.9	11.1	8.4	6.8	3.0
C.D. (P=0.05)	NS	NS	NS	NS	NS	NS

Table K-21-AST-7 (e): Cut wise GFY and DFY of forage pearl millet varieties at Pusa

	Green Fod	der Yield (q ha ⁻¹)		Dı	ry Matter Yield(q ha ⁻¹)
Varieties	First cut	Second cut	Third cut*	First cut	Second cut	Third cut*
TSFB 15-4	285.7	211.2	145.2	57.7	40.7	27.2
TSFB 15-8	359.0	217.9	171.6	73.8	43.5	33.0
MotiBajra	368.8	219.6	199.8	75.2	44.6	39.7
BAIF Bajra-1	373.3	223.1	191.0	75.5	44.5	37.7
SE(m) ±	9.8	7.3	-	3.0	1.2	-
C.D. (P=0.05)	33.8	NS	-	10.4	NS	-
Nitrogen levels						
80 kg/ha	325.7	202.2	152.1	61.4	37.9	28.1
120 kg/ha	367.7	233.7	201.7	79.7	48.8	40.7
SE(m) ±	9.4	5.9	-	1.9	1.2	-
C.D. (P=0.05)	27.4	17.2	-	5.6	3.4	-
Cutting management						
Two cuts	381.4	261.7	176.9	79.3	53.0	-
Three cuts	312.0	174.1	-	61.8	33.7	34.4
SE(m) ±	9.4	5.9	-	1.9	1.2	-
C.D. (P=0.05)	27.4	17.2	-	5.6	3.4	-

TableK-21-AST-7(f): Cut wise GFY and DFY of forage pearl millet varieties as affected at Ludhiana

Treatments	Green	n fodder yield (q	ha ⁻¹)	Dry M	latter Yield(q ha	1)
	First Cut	Second Cut	Third Cut	First Cut	Second Cut	Third Cut
Varieties						
TSFB 15-4	268.7	170.6	27.8	53.8	31.4	3.51
TSFB 15-8	346.6	212.5	34.8	69.1	39.1	4.18
MotiBajra	388.8	220.7	36.9	75.9	40.6	3.82
BAIF Bajra-1	303.3	166.7	30.6	58.4	30.9	3.15
SE(m) ±	9.9	7.8	0.6	1.9	1.4	0.06
C.D. (P=0.05)	34.1	26.9	2.1	6.7	4.9	0.20
Nitrogen management						
80 kg/ha	306.3	177.3	31.1	57.3	30.5	3.04
120 kg/ha	347.4	207.9	33.9	71.3	40.5	4.29
SE(m) ±	6.4	3.9	0.6	1.3	0.7	0.06
C.D. (P=0.05)	18.6	11.4	1.6	3.7	2.1	0.17
Cutting management						
Two cuts	343.6	230.4	0.0	67.4	42.7	0.00
Three cuts	310.0	154.9	65.0	61.2	28.3	7.33
SE(m) ±	6.4	3.9	0.6	1.3	0.7	0.06
C.D. (P=0.05)	18.6	11.4	1.6	3.7	2.1	0.17

TableK-21-AST-7 (g):Cut wise growth parameters of forage pearl millet varieties as affected by nitrogen and cutting

management at Raipur

Treatments		Plant height (cm)	t	No of	tillers m ro	w length	I	L:S Ratio	
	First Cut	Second Cut	Third Cut	First Cut	Second Cut	Third Cut	First Cut	Second Cut	Third Cut
Varieties									
TSFB 15-4	165.89	250.91	132.4	20.33	28.33	22.78	0.71	0.34	0.19
TSFB 15-8	200.95	209.66	95.2	31.83	41.66	30.78	0.57	0.27	0.35
Moti Bajra	224.35	186.66	106.1	26.75	35.91	31.44	0.52	0.26	0.20
BAIF Bajra-1	187.04	227.08	111.7	28.66	34.25	30.11	0.62	0.31	0.36
SE(m) ±	4.08	7.19		2.15	1.60		0.05	0.01	
C.D. (P=0.05)	14.12	24.84		7.43	5.53		NS	0.04	
Nitrogen levels									
80 kg/ha	193.30	216.33	104.2	27.75	34.45	28.5	0.61	0.30	0.29
120 kg/ha	195.81	220.83	118.5	26.04	35.62	29.1	0.62	0.29	0.26
SE(m) ±	2.78	4.85		1.46	1.20		0.02	0.01	
C.D. (P=0.05)	NS	NS		NS	NS		NS	NS	
Cutting manageme	ent								
Two cuts	213.19	214.33		24.33	35.08		0.52	0.27	
Three cuts	175.92	239.83	111.4	29.45	35.00	28.77	0.70	0.32	0.28
SE(m) ±	2.78	4.85		1.46	1.20		0.02	0.01	
C.D. (P=0.05)	8.11	14.15		4.28	NS		0.07	0.03	
Interaction									
AXBXC	NS	NS		NS	NS		NS	NS	

Table K-21-AST-7 (h): Cut wise growth parameters of forage pearl millet varieties as affected by nitrogen and cutting management at Pusa

G	P	lant height (cm	n)	Till	ers/m			L:S ratio	
Varieties	First cut	Second cut	Third cut	First cut	Second cut	Third cut	First cut	Second cut	Third cut
TSFB 15-4	141.1	122.6	111.9	19.08	34.20	32.04	0.36	0.42	0.39
TSFB 15-8	148.6	127.7	117.6	25.75	39.30	37.45	0.32	0.36	0.37
MotiBajra	153.1	130.3	119.8	22.08	37.76	42.00	0.31	0.37	0.35
BAIF Bajra-1	154.9	132.9	118.4	23.88	37.63	41.80	0.34	0.40	0.39
SE(m) ±	2.7	3.0	-	0.71	1.00	-	0.01	0.00	-
C.D. (P=0.05)	9.2	NS	-	2.47	NS	-	0.03	0.02	-
Nitrogen levels									
80 kg/ha	143.2	123.4	112.6	21.08	34.64	36.37	0.30	0.36	0.34
120 kg/ha	155.6	133.4	121.2	24.31	39.80	40.28	0.37	0.41	0.41
SE(m) ±	2.1	2.5	-	0.41	0.47	-	0.01	0.01	-
C.D. (P=0.05)	6.1	7.2	-	1.21	1.36	-	0.03	0.02	-
Cutting									
management									
Two cuts	164.0	145.0	-	24.75	39.01	-	0.36	0.37	
Three cuts	134.9	111.8	116.9	20.65	35.43	38.32	0.31	0.40	0.38
SE(m) ±	2.1	2.5	-	0.41	0.47	-	0.01	0.01	-
C.D. (P=0.05)	6.1	7.2	-	1.21	1.36	-	0.03	0.02	-

B. Location Specific Trials

K-20-AST-3: Optimizing the feedstuffs for air evacuating method of silage production in polybags

[(Table Reference: K-20-AST-3(a) to (b)]

Location (1): Coimbatore

A Field experiment was initiated during June 2020 at Tamil Nadu Agricultural University, Coimbatore to identify suitable fodder crops and additives for polybag method of silage production. The treatments consists of four fodder crops (T₁ - BN hybrid grass (CO BN- 5), T₂ - Fodder maize (African Tall), T₃ - Perennial fodder sorghum (CO-31), T₄ - Guinea grass (CO GG-3) and four method and additives (F₁ - Air evacuation method without additives, F_2 – Air evacuation method with additives (molasses 1%), F_3 – Manual compaction method without additives,F₄ – Manual compaction method with additives (molasses 1%). In air evacuation method, removal of air in poly bags was achieved using vacuum machines. Additives were applied on fresh weight basis. Experiment was laid out in Factorial Randomized Block Design with three replications. Polybags with a capacity of 20kg were used. The observations on fresh silage yield, dry matter content, and temperature, moisture content (before and after storage) were recorded. The laboratory analysis for estimating quality parameters viz., pH, crude protein content, crude fibre content, Ash, acetic acid, lactic acid, butyric acid, digestible dry matter after ensiling were done and data documented. Analyses were done immediately after opening the bag by collecting samples from different layers of bag.

Fodder crops indicated marked impact on dry matter content, moisture content, PH, crude protein content, crude fibre content, ash content, lactic acid content and acetic acid content. Among the different fodder crops, silage produced with fodder maize recorded significantly higher moisture content (before ensiling) of 69.7 percent, moisture content (after ensiling) of 62.4 percent, acetic acid content of 2.2 percent, lactic acid content of 8.2 percent, dry matter digestibility of 61.4 percent and palatability of 98.1 percent with PH of 4.2.

Significantly higher crude protein content of 11.3 percent and ash content of 10.8 percent were registered in Bajra Napier hybrid grass silage. It also recorded the palatability of 97.8 percent which was on par with fodder maize silage. silage of fodder sorghum registered significantly higher dry matter content of 29.9 percent and higher PH of 5.1 with significantly lesser moisture content (before and after silage), crude fibre content (24.5 percent), acetic acid content (1.4 percent), lactic acid content (5.6 percent), dry matter digestibility (52.6 percent) and palatability (93.5 percent).

Method of silage production and additives had no significant effect on fresh silage yield, dry matter content, crude fibre content, ash content, butyric acid content, dry matter digestibility and palatability of silage in polybags. However, it exerted a considerable variation in silage temperature, moisture content (before and after silage), crude protein content, lactic acid content, acetic acid content and dry matter digestibility. Among the methods and additive management, air evacuation method of silage production with application of molasses 1% recorded significantly higher moisture content after silage (61.7 percent), crude protein content (9.5 percent), acidic acid content (2.0 percent) and lactic acid content with lesser PH of 4.3. It was found to be on par with manual compaction method with additives.

Different fodder crops, method of silage production with and without additives, also had a significant interaction effect on acetic acid and lactic acid contents of silage. Higher acetic acid content of 2.5 percent and lactic acid content of 9.0 per cent were recorded in poly bag silage of fodder maize produced by air evacuation method with additives (T2F2) and it was on par with silage of fodder maize produced by manual compaction method with additives (T2F4). However, significantly lower acetic acid content of 1.2 percent and lactic acid content of 4.4 per cent were recorded in silage of fodder sorghum produced through manual compaction method without additives (T3F3).

Table K-20-AST-3 (a): Effect of different fodder crops, method and additives on fresh yield, dry matter and moisture content of polybags silage

Treatments	Fresh silage yield (Kg)	Dry matter content (%)	Temperature °C	Moisture percent (Before)	Moisture percent (After)	pН
Factor 1:Fodder crops (4)						
T ₁ - BN hybrid grass (CO BN- 5)	19.7	25.9	34.2	67.6	61.4	4.4
T ₂ - Fodder maize (African Tall)	19.6	23.5	35.1	69.7	62.4	4.2
T ₃ - Perennial fodder sorghum (CO-31)	19.4	29.9	33.3	62.1	57.1	5.1
T ₄ - Guinea grass (CO GG-3)	19.6	28.1	34.6	64.9	58.9	4.7
SE(m) ±	0.06	0.24	0.30	0.53	0.54	0.04
C.D. (P=0.05)	NS	0.71	0.88	1.52	1.56	0.12
Factor 2:Method and additives (4)						
F ₁ - Air evacuation method without additives	19.6	27.1	33.8	65.3	59.1	4.9
F ₂ – Air evacuation method with additives (molasses 1%)	19.5	26.6	35.4	66.9	61.7	4.3
F ₃ – Manual compaction method without additives	19.7	27.0	32.9	64.8	58.9	4.8
F ₄ – Manual compaction method with additives (molasses 1%)	19.6	27.2	35.0	67.2	60.6	4.4
SE(m) ±	0.06	0.24	0.30	0.53	0.54	0.04
C.D. (P=0.05)	NS	NS	0.59	1.52	1.56	0.12
Factor 1 x Factor 2						
SE(m) ±	0.12	0.49	0.61	1.05	1.08	0.08
C.D. (P=0.05)	NS	NS	NS	NS	NS	NS
CV (%)	1.1	3.2	3.0	2.8	3.2	3.1

Table K-20-AST-3 (b): Effect of different fodder crops, method and additives on quality of polybags silage (over three years)

Treatments	CP	Crude	Ash	Acetic	Lactic	Butyric	DDM	Palatability
	(%)	fibre	(%)	acid	acid	acid	(%)	(%)
		(%)		(%)	(%)	(%)		
Factor 1:Fodder crops (4)								
T ₁ – BN hybrid grass (CO BN- 5)	11.3	28.9	10.8	1.9	7.1	0.0	57.9	97.8
T ₂ – Fodder maize (African Tall)	9.4	25.1	6.1	2.2	8.2	0.0	61.4	98.1
T ₃ – Perennial fodder sorghum (CO-31)	8.5	24.5	9.4	1.4	5.6	0.0	52.6	93.5
T ₄ – Guinea grass (CO GG-3)	7.2	30.9	9.7	1.8	6.7	0.0	55.4	96.9
SE(m) ±	0.11	0.43	0.08	0.02	0.07		0.67	0.59
C.D. (P=0.05)	0.22	0.87	0.24	0.06	0.21	NS	1.95	1.70
Factor 2:Method and additives (4)								
F_1 – Air evacuation method without additives	9.1	26.8	9.1	1.7	6.4	0.0	56.8	96.1
F ₂ – Air evacuation method with additives (molasses 1%)	9.5	27.6	8.9	2.0	7.5	0.0	57.1	97.5
F ₃ – Manual compaction method without additives	8.9	27.5	9.0	1.5	5.7	0.0	55.9	95.8
F ₄ – Manual compaction method with additives (molasses 1%)	9.1	27.5	8.9	2.1	7.8	0.0	57.4	96.8
SE(m) ±	0.11	0.43	0.08	0.02	0.07		0.67	0.59
C.D. (P=0.05)	0.22	NS	NS	0.06	0.21	NS	NS	NS
Factor 1 x Factor 2								
SE(m) ±	0.21	0.87	0.17	0.04	0.14		1.35	1.18
C.D. (P=0.05)	NS	NS	NS	0.12	0.42	NS	NS	NS
CV (%)	2.9	3.8	3.2	4.0	3.7		4.1	2.1

K-20-AST-6: Precision nitrogen management for enhancing fodder yield and nitrogen use efficiency in forages

[(Table Reference: K-20-AST-6 (a)]

Location (1): Srinagar

Preamble

Fodder grasses are highly responsive to nitrogen application in terms of growth, quality and yield. Fertilizer nitrogen is a common input used by farmers in different agro-climatic conditions in India with varied use efficiency (30-50%). Nitrogen exhibits high synergistic effect in combination with water and other inputs. Application of inadequate dose of nitrogen results in yield reduction and application in excess leads to increased cost of cultivation and environmental pollution. Hence, the present study on precision management of nitrogen for efficient management and increasing NUE is proposed.

A field experiment was started during Kharif 2020 (establishment year) at Srinagar Centre on precision nitrogen management for enhancing fodder yield and nitrogen use efficiency in forage maize variety SFM-1 (KDFM-1). The crop was planted at spacing of 30 x10 cm. The treatments consisted of T₁ (No N), T₂ 50 kg N/ha (40% N basal) + remaining based on SPAD meter critical value of 40, T₃ 50 kg N/ha (40% N basal) + remaining based on SPAD meter critical value of 50, T₄ 50 kg N/ha (40% N basal) + remaining based on LCC 4, T₅ 50 kg N/ha (40% N basal) + remaining based on LCC 5, T₆ 100 kg N/ha (40% N basal) + remaining based on SPAD meter critical value of 40, T₇ 100 kg N/ha (40% N basal) + remaining based on SPAD meter critical value of 50, T₈ 100 kg N/ha (40% N basal) + remaining based on LCC 4, T₉ 100 kg N/ha (40% N basal) + remaining based on LCC 5, T₁₀ 150 kg N/ha (40% N basal) + remaining based on SPAD meter critical value of 40, T₁₁ 150 kg N/ha (40% N basal) + remaining based on SPAD meter critical value of 50, T₁₂ 150 kg N/ha (40% N basal) + remaining based on LCC 4, T₁₃150 kg N/ha (40% N basal) + remaining based on LCC 5, T₁₄ as per recommended package of practices (50% N as basal, remaining 50% at 30 days after sowing). The treatments were replicated thrice in a randomized block design. The results recorded during the year indicated that production of fodder maize was better for the treatment T₁₄ (150 kg N/ha (40% N basal) + remaining based on LCC 5. It recorded 479.12 q green and 137.45 q dry matter yield per hectare. However, it was on par with treatment T₁₀, T₁₁ T₁₂ and T₁₃ in terms of green fodder and treatment T₁₂ and T₁₃ in terms of dry matter productivity. Treatment T₁₄ (150 kg N/ha (40% N basal) + remaining based on LCC 5 also recorded nitrogen uptake and CP yield over other treatments. The growth parameters namely; plant height; number of leaves per plant and quality were also improved with this treatment as compared to other treatments.

Table K-20-AST-6 (a): Effect of precision nitrogen management Yield and Nitrogen uptake

	Treatments	Plant height (cm)	No. of leaves / plant	Green fodder yield (q/ha)	Dry fodder yield (q/ha)	N Content	N uptake (Kg/ha)	C P yield (kg/ha)
T_1	No N Control	221.50	9.92	423.91	85.65	0.40	34.26	214.12
T ₂	50 kg N/ha (40% basal) + remaining based on LCC 4	224.28	10.24	429.68	91.28	0.43	39.25	245.31
T ₃	50 kg N/ha (40% basal) + remaining based on SPAD meter critical value of 40	233.10	10.72	443.67	98.32	0.46	45.22	282.62
T ₄	50 kg N/ha (40% basal) + remaining based on LCC 5	234.37	10.97	446.10	102.14	0.52	53.11	331.93
T ₅	50 kg N/ha (40% basal) + remaining based on SPAD meter critical value of 50	238.14	11.32	449.37	107.31	0.60	64.38	402.37
T6	100 kg N/ha (40% basal) + remaining based on SPAD meter critical value of 40	239.45	11.73	452.65	110.24	0.67	73.86	461.62
T ₇	100 kg N/ha (40% basal) + remaining based on LCC 4	240.10	12.16	457.50	113.02	0.69	77.98	487.37
T ₈	100 kg N/ha (40% basal) + remaining based on SPAD meter critical value of 50	245.34	12.58	460.10	115.37	0.70	80.75	504.68
T ₉	100 kg N/ha (40% basal) + remaining based on LCC 4	246.50	13.01	464.35	120.12	0.75	90.09	563.06
T ₁₀	As per recommended package of practices (50 % N as basal, remaining 50 % at 30 days after sowing	248.60	13.39	470.11	123.14	0.77	94.81	592.56
T ₁₁	150 kg N/ha (40% basal) + remaining based on SPAD meter critical value of 40	252.18	13.49	472.58	126.09	0.84	105.91	661.93
T ₁₂	150 kg N/ha (40% basal) + remaining based on LCC 4	255.33	13.59	473.25	131.11	0.98	128.48	803.00
T ₁₃	150 kg N/ha (40% basal) + remaining based on SPAD meter critical value of 50	258.68	14.27	475.60	133.02	1.04	138.34	861.62
T ₁₄	150 kg N/ha (40% basal) + remaining based on LCC 5	267.11	16.54	479.12	137.45	1.08	148.44	927.75
SE(n	u) ±	3.02	0.32	3.62	2.25	N.S	2.70	9.47
C.D.	(P=0.05)	9.03	0.98	10.86	6.75	N.S	8.11	28.41

K-20-AST-5: Evaluation of promising fodder grass varieties under shade conditions

[(Table Reference: K-20-AST-5 (a) to (b)]

Location (1): Vellayani

An experiment was laid out at Vellayani centre to assess the influence of different shade levels on the growth, quality and yield of promising fodder varieties. The experiment was laid out in split plot design with three replications. Treatments comprised of three shade levels (0%, 25% and 50% shade) and 5 fodder varieties (BN hybrid varieties Suguna, Susthira, CO-3, CO-5 and Guinea grass var. Sulabha) making 15 treatment combinations.25 % and 50 % shades were established using shade nets. The BN hybrid was planted in 60 cm a part lines with plant to plant spacing of 60 cm. the lot size was 3X3 m².

Perusal of first year data revealed that different shade levels had significant effect on the yield of different fodder grasses. Highest value for plant height was recorded under 50% shade (1.72 m) by BN hybrid variety Suguna (1.78 m) and guinea grass variety Sulabha (1.72 m). The treatment combination of BN hybrid variety Suguna under 50 % shade level (2.13 m). Eventhough the interaction effect was non-significant, among the shade levels highest L: S ratio was recorded under open (1.53) and highest leaf area was recorded under both 25% and 50% shade levels. Among the varieties, highest tiller number was recorded by guinea grass var. Sulabha (31.7), highest LSR by BN hybrid varieties CO-3 and CO-5 and highest leaf area in BN hybrid variety Susthira.

Highest GFY (2418.7 q/ha) and DFY (604.7 q/ha) were recorded by S_3V_4 (CO-5 under open condition). Under 25 % and 50 % shade levels, highest GFY and DFY were recorded by guinea grass var. Sulabha.

Highest chlorophyll content was recorded by all BN hybrid varieties under 50 % shade than the other two shade levels. The interaction effect was nonsignificant on quality characters like protein, fibre and oxalate contents. Among the shade levels, highest protein content was recorded under 50 % shade level. Among varieties,BN hybrid var. Suguna recorded highest protein content and GG var. Sulabha recorded lowest fibre content.

K-20-AST-5 (a): Growth characters of different fodder grass varieties under varying shade levels

Treatment	Plant Height (m)	No. of tillers	L: S Ratio	Leaf Area (cm ²)
Shade Levels				
S ₁ (25%)	1.56 ab	19.80 b	1.40	358.8 a
S ₂ (50%)	1.72 a	19.07 b	1.32	355.5 a
S ₃ (Open)	1.44 b	24.27 a	1.53	307.1 b
SE(m) ±	0.0413	1.04	0.04	5.76
C.D. (P=0.05)	0.162	4.1001	NS	22.6315
Varieties				
V ₁ (Suguna)	1.79 a	16.33 c	1.21	362.1 b
V ₂ (Susthira)	1.59 b	15.44 с	1.22	485.6 a
V ₃ (CO 3)	1.41 c	20.89 b	1.65	288.4 c
V ₄ (CO 5)	1.37 c	20.78 b	1.51	292.2c
V ₅ (Sulabha)	1.72 ab	31.78 a	1.49	273.9 с
SE(m) ±	0.056	0.94	0.10	12.80
C.D. (P=0.05)	0.16	2.73	0.29	37.36
Interaction Effect				
$\overline{S_1V_1}$	1.58	15.00	1.43	380.7
$\overline{S_1V_2}$	1.49	14.33	1.23	485.0
$\overline{S_1V_3}$	1.62	20.67	1.42	324.7
$\overline{S_1V_4}$	1.43	19.00	1.47	316.7
$\overline{S_1V_5}$	1.70	30.00	1.43	287.0
$\overline{S_2V_1}$	2.13	16.33	1.21	380.7
S_2V_2	1.71	14.00	1.18	531.0
$\overline{S_2V_3}$	1.43	16.67	1.35	292.0
$\overline{S_2V_4}$	1.47	19.00	1.43	281.3
S_2V_5	1.86	29.33	1.43	292.3
$\overline{S_3V_1}$	1.65	17.67	0.99	325.0
S_3V_2	1.65	18.00	1.24	440.7
S_3V_3	1.18	25.33	2.17	248.7
S_3V_4	1.20	24.33	1.63	278.7
S_3V_5	1.60	36.00	1.600	242.333
SE(m) ±	0.0966	1.6205	0.1742	22.1713
C.D. (P=0.05)	0.282	NS	NS	NS

K-20-AST-5 (b) Yield and quality different fodder grass varieties under shade conditions

Treatment	Yields	(q/ha)	*Chlorophyll content	CP content (%)	Fibre content	Oxalate
Treatment	Green fodder	Dry matter	(mg g ¹)		(%)	content (%)
Shade Levels						
S ₁ (25%)	1865.9 b	466.7 b	2.6 b	11.0 b	27.29	2.51
S ₂ (50%)	1674.1 c	418.7 c	3.2 a	11.7 a	26.34	2.59
S ₃ (Open)	2088.2 a	522.1 a	2.4 c	10.1 c	28.73	2.33
SE(m) ±	8.5169	7.9948	0.0143	0.0553	0.7935	0.0908
C.D. (P=0.05)	33.4414	31.395	0.0563	0.2163	NS	NS
Varieties						
V ₁ (Suguna)	1844.3 с	461.3bc	2.99 ab	11.33 b	28.32	2.49
V ₂ (Susthira)	1796.3 d	449.1 c	2.89 b	10.32 c	27.86	2.46
V ₃ (CO 3)	1808.8 cd	452.4 c	3.14 a	9.87 e	28.83	2.38
V ₄ (CO 5)	1921.000 b	480.333 ab	3.122 a	10.790 с	28.406	2.556
V ₅ (GG-Sulabha)	2009.8 a	502.7 a	1.51 c	12.35 a	23.84	2.49
SE(m) ±	13.248	8.7105	0.0566	0.1222	0.5044	0.0691
C.D. (P=0.05)	38.6683	25.4241	0.1625	0.3567	1.4721	NS
Interaction Effect						
S_1V_1	1907.3	477.3	2.83	11.43	28.63	2.53
S_1V_2	1840.7	460.3	2.75	10.25	27.68	2.46
S_1V_3	1781.7	446.0	2.99	9.64	28.43	2.53
S_1V_4	1744.3	436.0	2.94	11.09	28.33	2.52
S_1V_5	2055.3	514.0	1.52	12.63	23.36	2.53
S_2V_1	1474.0	368.7	3.60	12.32	27.44	2.56
S_2V_2	1500.0	375.0	3.45	11.00	26.42	2.63
S_2V_3	1589.0	397.3	3.54	10.73	27.53	2.55
S_2V_4	1600.0	400.3	3.78	11.24	27.70	2.65
S_2V_5	2207.3	552.0	1.61	13.30	22.58	2.54
S_3V_1	2151.7	538.0	2.56	10.25	28.89	2.40
S_3V_2	2048.3	512.0	2.49	9.72	29.48	2.30
S_3V_3	2055.7	514.0	2.87	9.23	30.52	2.07
S_3V_4	2418.7	604.7	2.65	10.14	29.18	2.50
S_3V_5	1766.7	442.000	1.39	11.13	25.57	2.40
SE(m) ±	22.9463	15.087	0.0981	0.2117	0.8736	0.1196
C.D. (P=0.05)	66.9754	44.0357	0.2862	NS	NS	NS

^{*}Fresh leaf weight basis

R-19-AST-5: Standardization of Magnesium nutrition in Bajra Napier Hybrid

[(Table Reference: R-19-AST-5 (a)]

Location: Vellayani

Bajra Napier hybrid is a tufted perennial humid tropical grass and is popular among dairy farmers of Kerala due to its robust growth, higher productivity, quality, palatability and persistence. Lack of magnesium (Mg) is common in Kerala due to acid soils, heavy fertilization with major nutrients, and leaching under heavy rainfall. Nearly 70 per cent of Kerala soils are deficient in magnesium (GOK, 2018). From an AICRP perennial trial conducted in the centre in past, it was recommended that magnesium application @ 80 kg ha⁻¹ resulted in highest tiller number, total green fodder yield and dry fodder yield compared to control treatments.

A field experiment was laid out at Vellayani to assess the impact of varying doses and frequency of application of magnesium on the growth, yield and quality attributes of BN hybrid. The experiment was laid out in RBD with 3 replications. Treatments comprised of threeMgSO₄ levels- 80, 100 and 120 kg/ha and three frequency of application 2, 3 and 4 splits/year. The crop was raised as per the POP recommendations except treatments. As basal application 25 t/ha FYM was applied followed by 200:50:50 kg/ha NPK in seven splits each applied after cut uniformly in all treatments. The soil in the experimental site was identified as sandy clay loam in texture, moderately acidic in reaction, medium in organic carbon, available nitrogen and available potassium, high in available phosphorus and deficient in available calcium and magnesium status.

Perusal of first year data revealed that among treatment combinations, significantly superior values of green fodder (1891.3 q/ha) and dry matter yields (473.0 q/ha) were recorded with the treatment combination application of 100 kg MgSO₄/ha once in 6 months. Highest number of tillers (27.07) and LSR (1.99) were also recorded in the same treatment combination. Significantly higher Mg content in plant was recorded in T9 (120 kg MgSO₄/ha once in 3 months).

R-19-AST-5 (a): Standardization of Magnesium nutrition in Bajra Napier Hybrid

Treatment	Plant	No of	Leaf Stem	Biomass	yield (q/ha)	Mg
	Height	Tillers/m	Ratio	GFY	DFY	content
	(cm)					in plant
						(%)
T1-80 kg MgSO ₄ /ha once in 6 months	195.3 ab	21.65 e	1.72 bcde	1685.0 c	421.3 bcd	0.350
T2-80 kg MgSO ₄ /ha once in 4 months	182.3 b	22.23 e	1.69 cde	1612.3 d	403.2 cde	0.380
T3-80 kg MgSO ₄ /ha once in 3 months	185.0 b	21.84 e	1.62 ef	1518.0 e	379.6 e	0.410
T4-100 kgMgSO ₄ /ha once in 6 months	200.0 ab	27.07 a	1.99 a	1891.3 a	473.0 a	0.467
T5-100 kg MgSO ₄ /ha once in 4 months	215.7 a	25.40 b	1.81 bc	1706.7 c	426.8 bcd	0.480
T6-100 kg MgSO ₄ /ha once in 3 months	200.0 ab	23.80 cd	1.83 b	1752.3 b	438.4 abc	0.497
T7-120 kgMgSO ₄ /ha once in 6 months	187.0 b	22.83 de	1.65 de	1577.0 d	394.4 de	0.443
T8-120 kg MgSO ₄ /ha once in 4 months	212.0 a	24.95 bc	1.75 bcd	1765.7 b	441.5 ab	0.520
T9-120 kg MgSO ₄ /ha once in 3 months	213.3 a	22.78 de	1.52 f	1594.0 d	398.8 de	0.550
T10-control	179.7 b	20.07 f	1.65 de	1507.0 e	376.8 e	0.330
SE(m) ±	8.316	0.454	0.041	14.95	12.622	0.007
C.D. (P=0.05)	24.7	1.348	0.121	44.419	37.503	0.022

C. AVT-2 Trials

K-21-AST-1: Second Advanced Varietal Trial in Forage Pearl Millet (AVTPM-2-1) [(Table Reference: K-21-AST-1 (a) to (u)]

Locations: NWZ-Ludhiana, Bikaner Pantnagar
NEZ- Pusa, Ranchi
CZ- Urulikanchan, Raipur, Anand
SZ-Hyderabad, Mandya

An experiment was conducted during *Kharif* 2021 to find out the response of four promising entries and three checks of pearl millet to graded doses of nitrogen. The study was undertaken at ten locations in four zones i.e, North West, North East, Central and South Zone with four entries (JPM-18-7, BAIF Bajra-7, Dev-1 and 16ADV0055), one national check, Giant Bajra and four zonal checks (BAIF Bajra 1 (CZ), AFB-3 (NWZ),APFB-9-1 (NEZ), and Moti Bajra (SZ) and Rajasthan check (RBB-1). All the entries were tested under three level of nitrogen application i.e. 30, 60 and 90 kg/ha. The treatments were replicated thrice in Randomized Block Design. The gross plot size was 4 m x 3 m accommodating 4 m long 10 rows at 30 cm. The seed rate used was 12.0 kg/ha.

The results indicated that, in North West Zone, entry Dev-1 recorded significantly higher green fodder yield over rest of the entries and checks. The entry JPM-18-7 and 6ADV0055 also produced significantly higher yields than all the checks. As regards to DFY, and CP yields similar trend was noted as that of green fodder yields. Best performing entry Dev-1 exhibited 28.7 and 14.9 % higher GFY and DFY over the best check - AFB-3 (NWZ). The entry 6ADV0055 and JPM-18-7 also demonstrated its superiority in growth attributes.

In North East Zone also entry Dev-1 recorded higher GFY and DFY, which was significantly superior over other entries as well as checks. This was closely followed by Zonal check- APFB-9-1. The other entries also out yielded all the checks except Zonal check. Similar trend was noted in CP yields. In central zone, entry 16ADV0055 proved higher yielder followed Dev-1. Both the entries out yielded national as well as zonal checks in terms of GFY, DMY and CP yield. In south zone JPM-18-7 produced maximum green, dry as well as crude protein yields. It was significantly superior over all the checks. On national mean basis across the zones, all the entries i.e. JPM-18-7, BAIF Bajra- 7, Dev-1, 16ADV0055 proved higher yield than the check giant Bajra (NC). Among the entries Dev-1, produced maximum biomass yields (535.2 q GFY, 108.5q DMY and 8.92 q/ha CPY). This was followed by 16ADV0055.

The growth parameters, herbage yield and crude protein yield increased consistently with increasing level of nitrogen up to 90 Kg N/ha. With the application of 90 kg N/ha, the green and dry matter yield increased by 20.0 and 23.8 per cent over 30 kg N/ha and 6.5&8.5 per cent over 60 kg N/ha. The response equation was worked out to $y = -0.012x^2 + 2.8267x + 344.1$ (R² = 0.9999). The Calculated Y_{maxima} is 117.8 kg N/ha, whereas, Y_{optima} is 111.3 kg/ha (input cost Rs 16.0/ Kg, output cost Rs 1.10/ kg)

K-21-AST-1 (a): Effect of nitrogen levels on green forage yieldof promising entries of forage Pearl millet

Varieties				•	<i>.</i>	_		rage Yield							
		NW	Z			NEZ			CZ	<u>Z</u>			SZ		Overall
	Ludh-	Bika-	Pant-	Mean	Pusa	Ran-	Mean	Urulik	Rai-	Ana-	Mean	Hyder	Man-	Mean	Mean
	iana	ner	nagar			chi		anchan	pur	nd		abad	dya		
JPM-18-7	533.3	720.2	500.2	584.6	496.1	388.9	442.5	352.8	482.7	617.0	484.2	332.3	290.4	311.4	471.4
BAIF Bajra- 7	475.0	529.4	291.3	431.9	447.1	413.4	430.3	330.6	403.1	565.0	432.9	260.1	298.7	279.4	401.4
Dev-1	596.8	711.9	641.5	650.1	598.2	496.4	547.3	519.7	603.0	607.0	576.6	286.9	290.4	288.7	535.2
16ADV0055	554.9	702.3	577.3	611.5	488.9	451.5	488.9	554.6	624.8	628.0	602.5	275.8	253.9	264.9	517.8
Giant Bajra (NC)	450.2	674.7	345.4	490.1	390.0	367.4	378.7	445.6	374.4	510.0	443.3	202.7	236.2	219.5	399.7
RBB-1 (NC)	314.7	511.1	314.0	379.9	379.1	370.3	374.7	285.9	276.7	432.0	331.5	203.6	300.0	251.8	338.7
AFB-3 (NWZ)	416.3	603.3	497.4	505.7											
APFB-9-1 (NEZ)					510.6	478.7	494.6								
BAIF Bajra 1 (CZ)								521.8	530.8	596.0	549.5				
Moti Bajra (SZ)												283.2	251.4	267.3	
SE(m) ±	15.1	34.71	11.24		14.2	2.39		12.92	18.69	13.36		6.5	9.83		
C.D. (P=0.05)	43.0	99.22	31.96		40.4	6.83		40.26	53.63	38.19		18.7	28.21		
N Levels (kg/ha)															
30	460.9	581.3	431.2	491.1	460.6	462.4	461.5	390.8	418.1	506.0	438.3	245.1	224.5	234.8	418.1
60	515.6	655.1	482.7	551.2	514.1	508.6	511.4	431.7	479.2	580.0	497.0	257.4	280.0	268.7	470.5
90	546.4	672.0	502.8	573.7	543.8	550.0	546.9	467.9	515.1	608.0	530.3	288.0	318.8	303.4	501.3
SE(m) ±	11.4	22.72	8.50		10.8	1.95		11.03	12.24	26.24		4.3	6.44		
C.D. (P=0.05)	32.5	64.95	24.16		30.5	5.60		32.12	35.11	75.01		12.3	18.46		
Interaction															
SE(m) ±	30.1		22.482		28.5	4.80			32.38			11.3	17.03		
C.D. (P=0.05)	NS		NS		NS	13.70		NS	NS			32.5	48.85		

K-21-AST-1 (b): Effect of nitrogen levels on and Dry matter yield (q/ha) of promising entries of forage Pearl millet

Varieties						` •		y matter y							
		N	WZ			NEZ			C	Z		SZ			Overall
	Ludh-	Bika-	Pant-	Mean	Pu-	Ran-	Mean	Urulik	Rai	Ana-	Mean	Hyder	Man-	Mean	Mean
	iana	ner	nagar		sa	chi		ancha	pur	nd		abad	dya		
JPM-18-7	57.40	163.53	104.42	108.5	111.40	96.05	103.7	51.50	105.00	99.92	85.5	66.40	69.60	68.00	92.52
BAIF Bajra- 7	54.06	109.36	52.93	72.1	89.80	102.10	96.0	52.29	82.90	93.93	76.4	51.40	68.90	60.15	75.77
Dev-1	69.66	153.68	145.12	122.8	128.80	122.54	125.7	81.22	132.30	120.53	111.4	58.00	72.80	65.40	108.47
16ADV0055	69.12	149.92	116.14	111.7	98.10	99.45	98.8	84.37	134.80	102.72	107.3	57.50	60.80	59.15	97.05
Giant Bajra (NC)	51.67	134.40	66.13	84.1	81.10	90.72	85.9	68.24	86.70	90.79	81.9	40.70	52.50	46.60	76.30
RBB-1 (NC)	34.76	124.40	69.43	76.2	77.60	91.44	84.5	62.24	55.10	67.86	61.7	41.20	71.40	56.30	69.54
AFB-3 (NWZ)	42.76	145.28	106.55	98.2											
APFB-9-1 (NEZ)					105.50	118.19	111.8								
BAIF Bajra 1 (CZ)								77.88	119.80	104.03	100.6				
Moti Bajra (SZ)												57.60	59.20	58.40	
SE(m) ±	1.7	10.37	2.45		3.0	1.33		2.02	5.68	2.52		1.8	2.63		
C.D. (P=0.05)	4.9	29.63	6.97		8.6	3.79		6.30	16.30	7.20		5.2	7.55		
CV (%)	11.2							3.21							
N Levels (kg/ha)															
30	53.73	137.39	90.73	94.0	93.2	114.2	103.70	62.84	86	79.5	76.1	48.8	47.4	48.10	81.38
60	58.16	142.04	99.98	100.1	112.4	125.6	119.00	71.62	104.1	97.17	91.0	52.2	65.1	58.65	92.84
90	61.79	140.81	102.63	101.7	123.5	135.78	129.64	70.29	117.1	114.67	100.7	58.7	82.2	70.45	100.75
SE(m) ±	1.3	6.79	1.85		2.3	1.10		2.61	3.72	4.95		1.2	1.72		
C.D. (P=0.05)	3.7	NS	5.27		6.5	3.10		5.37	10.67	14.15		3.4	4.94		
CV (%)															
Interaction															
SE(m) ±	3.4		4.906		6.1	2.66		-	9.84			3.2	4.56		
C.D. (P=0.05)	9.8		N/A		NS	7.60		NS	NS	Sign.		NS	NS		
CV (%)								6.82		7.78		10.3			

K-21-AST-1 (c): Effect of nitrogen levels on crude protein yield (q/ha) of promising entries of forage Pearl millet

Entries						`	ude prote	0					
		NV	VZ			NEZ	-		CZ	Z		SZ	Overall
	Ludh-	Bika-	Pant-	Mean	Pusa	Ran-	Mean	Urulika-	Rai-	Ana-	Mean	Hydera-	Mean
	iana	ner	nagar			chi		nchan	pur	nd		bad	
JPM-18-7	3.54	12.89	10.20	8.88	9.59	9.34	9.47	4.82	9.75	7.78	7.45	5.88	8.06
BAIF Bajra- 7	3.67	9.08	3.99	5.58	7.59	11.12	9.36	5.21	7.59	7.58	6.79	3.99	6.09
Dev-1	3.97	10.57	14.92	9.82	11.06	11.66	11.36	8.63	8.49	8.81	8.64	4.88	8.92
16ADV0055	4.02	9.92	11.78	8.57	8.48	9.87	9.18	8.61	9.29	9.22	9.04	4.61	8.24
Giant Bajra (NC)	2.89	10.59	5.56	6.35	6.77	10.32	8.55	6.63	7.69	7.89	7.40	3.11	6.39
RBB-1 (NC)	2.24	8.25	6.02	5.50	6.29	7.49	6.89	6.15	3.69	6.15	5.33	3.40	5.27
AFB-3 (NWZ)	2.71	10.25	10.04	7.67									
APFB-9-1 (NEZ)					9.04	11.62	10.33						
BAIF Bajra 1 (CZ)								5.73	7.33	8.65	7.24		
Moti Bajra (SZ)												4.99	
SE(m) ±	0.10	0.81	0.24		0.27	0.14		0.21	0.42	0.28		0.17	
C.D. (P=0.05)	0.30	2.32	0.69		0.76	0.41		0.65	1.20	0.80		0.49	
CV (%)	10.90							1.07					
30	3.20	9.54	8.45	7.06	7.80	10.99	9.40	6.12	6.00	5.90.	6.06	3.94	6.44
60	3.49	11.21	9.52	8.07	9.67	12.49	11.08	6.35	7.82	7.86	7.34	4.35	7.53
90	4.10	9.91	10.22	8.08	10.87	13.90	12.39	7.15	9.25	10.28	8.89	4.95	8.34
SE(m) ±	0.08	0.53	0.18		0.20	0.12		0.19	0.27	0.55		0.11	
C.D. (P=0.05)	0.22	1.52	0.52		0.58	0.34		0.55	0.08	1.57		0.33	
Interaction													
SE(m) ±	0.21		0.482		0.54	0.28		-	0.72			0.301	
C.D. (P=0.05)	0.59		1.371		NS	NS		1.47	NS	NS		NS	
CV (%)								2.25		6.48		11.8	

K-21-AST-1 (d): Effect of nitrogen levels on growth parameters of promising entries of forage Pearl millet

Varieties				Green	Fodder Y	ield (q/ha/da	ay)			
	NWZ				NEZ			CZ		
	Ludh-	Bika-	Pant-	Mean	Pusa	Ran-	Mean	Urulikan-	Rai-pur	Mean
	iana	ner	nagar			chi		chan		
JPM-18-7	5.61	12.86	6.58	8.35	7.89	5.56	6.73	5.19	8.18	6.69
BAIF Bajra- 7	5.00	9.45	3.83	6.09	8.1	5.91	7.01	3.39	6.11	4.75
Dev-1	6.28	12.71	8.44	9.14	9.5	7.09	8.30	7.42	8.49	7.96
16ADV0055	5.84	12.54	8.13	8.84	7.56	5.78	6.67	7.81	12.25	10.03
Giant Bajra (NC)	4.74	12.05	4.87	7.22	6.5	5.25	5.88	6.55	6.93	6.74
RBB-1 (NC)	4.77	9.13	4.55	6.15	7.15	5.29	6.22	3.86	5.53	4.7
AFB-3 (NWZ)	6.31	10.77	7.21	8.1						
APFB-9-1 (NEZ)					8.58	6.84	7.71			
BAIF Bajra 1 (CZ)										
Moti Bajra (SZ)								7.45	7.27	7.36
SE(m) ±	0.2	0.62	0.16		0.25	0.03			0.32	
C.D. (P=0.05)	0.5	1.77	0.44		0.71	0.09			0.93	
N Levels (kg/ha)										
30	5.32	10.38	5.94	7.21	7.76	6.61	7.19	5.58	6.95	6.27
60	5.92	11.7	6.65	8.09	8.57	7.27	7.92	6.17	7.97	7.07
90	6.29	12	6.92	8.4	8.92	7.86	8.39	6.11	8.55	7.33
SE(m) ±	0.1	0.41	0.12		0.19	0.03			0.21	
C.D. (P=0.05)	0.4	1.16	0.33		0.53	0.08			0.61	
Interaction										
SE(m) ±	0.3		0.31		0.5	0.07			0.56	
C.D. (P=0.05)	NS		N/A		NS	0.20			NS	

K-21-AST-1 (e): Effect of nitrogen levels on growth parameters of promising entries of forage Pearl millet

Varieties			Dry Mat	ter Yield (q/h	a/day)		
	Ludhiana	Bikaner	Pantnagar	Pusa	Ranchi	Urulikanchan	Mean
JPM-18-7	0.60	2.92	1.38	1.77	1.37	0.76	1.47
BAIF Bajra- 7	0.57	1.95	0.70	1.63	1.46	0.75	1.18
Dev-1	0.73	2.74	1.91	2.04	1.75	1.16	1.72
16ADV0055	0.73	2.68	1.63	1.52	1.43	1.19	1.53
Giant Bajra (NC)	0.54	2.40	0.93	1.35	1.30	1.00	1.25
RBB-1 (NC)	0.53	2.22	1.01	1.46	1.31	0.84	1.23
AFB-3 (NWZ)	0.65	2.59	1.54				
APFB-9-1 (NEZ)				1.77	1.69		
BAIF Bajra 1 (CZ)						1.11	1.56
Moti Bajra (SZ)							
SE(m) ±	0.02	0.19	0.03	0.05	0.02		
C.D. (P=0.05)	0.06	0.53	0.10	0.15	0.05		
N Levels (kg/ha)							
30	0.61	2.45	1.25	1.57	1.63	0.90	1.40
60	0.67	2.54	1.38	1.87	1.79	1.02	1.55
90	0.71	2.51	1.41	2.02	1.94	1.00	1.60
SE(m) ±	0.01	0.12	0.03	0.04	0.02		
C.D. (P=0.05)	0.04	NS	0.07	0.11	0.04		
Interaction							
SE(m) ±	0.04		0.067	0.11	0.04		
C.D. (P=0.05)	NS		N/A	NS	0.11		

K-21-AST-1 (f): Effect of nitrogen levels on crude protein content of promising entries of forage Pearl millet

Varieties Varieties		,		<u> </u>			e Protein						
		N	WZ			NEZ			C	ZZ		SZ	Overall
	Ludh-	Bika-	Pant-	Mean	Pu-	Ran-	Mean	Urulik	Rai-	Ana-	Mean	Hyder	Mean
	iana	ner	nagar		sa	chi		anchan	pur	nd		abad	
JPM-18-7	6.1	7.97	9.75	7.94	8.56	9.67	9.12	9.26	9.28	7.68	8.48	8.83	8.57
BAIF Bajra- 7	6.6	8.39	7.51	7.50	8.46	10.75	9.61	9.88	9.09	7.97	8.53	7.72	8.49
Dev-1	5.7	6.97	10.25	7.64	8.54	9.38	8.96	10.61	6.41	7.25	6.83	8.42	8.17
16ADV0055	5.8	6.61	10.10	7.50	8.57	9.93	9.25	10.13	6.87	8.91	7.89	8.01	8.33
Giant Bajra (NC)	5.6	7.85	8.38	7.28	8.29	11.29	9.79	9.80	8.72	8.54	8.63	7.67	8.46
RBB-1 (NC)	6.4	6.66	8.64	7.23	8.04	8.14	8.09	9.97	6.68	8.99	7.84	8.18	7.97
AFB-3 (NWZ)	6.4	7.07	9.41	7.63									
APFB-9-1 (NEZ)					8.48	9.80	9.14						
BAIF Bajra 1 (CZ)								7.39	6.10	8.23	7.17		
Moti Bajra (SZ)												8.70	
SE(m) ±		0.28	0.08		0.13	0.04			0.06	0.23		0.12	
C.D. (P=0.05)		0.79	0.23		0.36	0.12			0.18	0.64		0.36	
CV (%)													
N Levels (kg/ha)													
30	6.0	6.96	9.05	7.34	8.36	9.66	9.01	9.80	7.16	7.46	7.31	8.00	8.05
60	6.0	8.02	9.23	7.75	8.60	9.96	9.28	8.81	7.65	8.15	7.90	8.30	8.30
90	6.6	7.10	9.61	7.77	8.77	10.22	9.50	10.12	7.96	9.07	8.52	8.35	8.64
SE(m) ±		0.18	0.06		0.10	0.03			0.04	0.44		0.08	
C.D. (P=0.05)		0.52	0.17		0.27	0.11			0.12	1.27		0.23	
Interaction													
SE(m) ±			0.162		0.25	0.08			0.11			0.22	
C.D. (P=0.05)			0.460		NS	NS			0.32	NS		0.63	
CV (%)										8.22		4.63	

K-21-AST-1 (i): Effect of nitrogen levels on growth parameters of promising entries of forage Pearl millet

Varieties]	Plant He	ight (cm)						
		NV	VZ		NEZ				C	ZZ			SZ	
	Ludh-	Bika-	Pant-	Mean	Pusa	Ranchi	Mean	Urulika	Rai-	Ana-	Mean	Hyder-	Man-	Mean
	iana	ner	nagar					nchan	pur	nd		abad	dya	
JPM-18-7	255.7	240.4	287.7	261.3	230.1	138.34	184.2	185.7	307.6	222.7	238.7	158.2	184.6	171.4
BAIF Bajra- 7	232.6	211.3	233.2	225.7	222.1	173.70	197.9	166.7	307.5	214.7	229.6	162.3	188.2	175.3
Dev-1	260.0	237.0	291.9	263.0	247.1	195.38	221.2	203.3	323.9	254.7	260.6	177.8	176.6	177.2
16ADV0055	247.3	196.0	260.3	234.5	234.6	153.0	193.8	192.6	330.2	243.0	255.3	159.3	176.7	168.0
Giant Bajra (NC)	234.4	222.0	279.2	245.2	216.9	134.73	175.8	185.1	287.9	221.2	231.4	156.2	161.0	158.6
RBB-1 (NC)	207.3	225.5	285.0	239.3	213.9	138.34	176.1	171.4	237.7	225.4	211.5	156.4	201.6	179.0
AFB-3 (NWZ)	206.3	239.0	284.0	243.1										
APFB-9-1 (NEZ)					237.0	178.61	207.8							
BAIF Bajra 1 (CZ)								193.2	322.3	238.9	251.5	138.7		
Moti Bajra (SZ)													163.2	
SE(m) ±	5.9	7.33	9.69		4.0	0.46			6.99	3.13		3.4	6.77	
C.D. (P=0.05)	16.9	20.96	27.55		11.3	1.30			20.07	8.95		9.7	19.42	
N Levels (kg/ha)	•													
30	231.4	219.7	269.0	240.0	225.9	152.97	189.4	181.9	286.2	220.6	229.6	152.1	164.3	158.2
60	243.6	232.9	291.7	256.1	236.4	182.05	209.2	182.5	305.6	230.5	239.5	158.3	178.5	168.4
90	238.4	220.8	306.6	255.2	242.6	203.38	223.0	192.0	315.4	243.5	250.3	164.9	193.7	179.3
SE(m) ±	4.5	4.8	7.33		3	0.37			4.58	6.15		2.2	4.43	
C.D. (P=0.05)	12.8	NS	20.83		8.5	1.07			13.14	17.57		6.4	12.71	
Interaction	•	•												
SE(m) ±	11.8		19.38		7.9	0.92			12.11			5.9	11.73	
C.D. (P=0.05)	NS		N/A		NS	2.62			NS	NS		16.8	NS	

K-21-AST-1 (j): Effect of nitrogen levels on growth parameters of promising entries of forage Pearl millet

				•		•		Ratio					
Variation		NW	VZ		NEZ			CZ			SZ		
Varieties	Ludh-	Bika-	Pant-	Mean	Pu-	Ran-	Mean	Urulikan-	Rai-	Mean	Hydera-	Man-	Mean
	iana	ner	nagar		sa	chi		chan	pur		bad	dya	
JPM-18-7	0.47	0.57	0.25	0.43	0.31	0.21	0.26	0.49	0.22	0.36	0.19	0.20	0.20
BAIF Bajra- 7	0.29	0.52	0.30	0.37	0.41	0.20	0.31	0.63	0.22	0.43	0.16	0.24	0.20
Dev-1	0.55	0.46	0.28	0.43	0.36	0.20	0.28	0.53	0.30	0.42	0.19	0.23	0.21
16ADV0055	0.44	0.53	0.29	0.42	0.33	0.20	0.27	0.53	0.33	0.43	0.19	0.20	0.20
Giant Bajra (NC)	0.47	0.48	0.26	0.40	0.30	0.20	0.25	0.53	0.20	0.37	0.20	0.21	0.21
RBB-1 (NC)	0.37	0.40	0.25	0.34	0.22	0.19	0.21	0.52	0.37	0.45	0.18	0.24	0.21
AFB-3 (NWZ)	0.46	0.36	0.28	0.37									
APFB-9-1 (NEZ)					0.26	0.20	0.23						
BAIF Bajra 1 (CZ)								0.61	0.29	0.45			
Moti Bajra (SZ)											0.19	0.20	0.20
SE(m) ±	0.01	0.05	0.01		0.00	0.004			0.01		0.00	0.01	
C.D. (P=0.05)	0.04	0.14	0.03		0.01	NS			0.02		0.01	0.02	
N Levels (kg/ha)													
30	0.39	0.44	0.27	0.37	0.32	0.20	0.26	0.55	0.25	0.40	0.18	0.19	0.19
60	0.49	0.49	0.28	0.42	0.34	0.20	0.27	0.57	0.28	0.43	0.21	0.22	0.22
90	0.58	0.49	0.29	0.45	0.35	0.21	0.28	0.53	0.30	0.42	0.18	0.24	0.21
SE(m) ±	0.01	0.03	0.01		0.00	0.003			0.01		0.00	0.00	
C.D. (P=0.05)	0.03	NS	0.02		0.01	NS			0.02		0.01	0.01	
Interaction	nteraction												
SE(m) ±	0.03		0.021		0.01	0.007			0.021		0.007	0.01	
C.D. (P=0.05)	0.08		N/A		0.03	NS			NS		0.019	NS	

K-21-AST-1 (k): Effect of nitrogen levels on growth parameters of promising entries of forage Pearl millet

The state of the s	Pla	nt Population/m² at Harvest		
Varieties	Ludh-	Bika-	Ran-	Mean
	iana	ner	chi	
JPM-18-7	38.8	71.22	37	49.01
BAIF Bajra- 7	22.7	78	38	46.23
Dev-1	40.8	83.11	38	53.97
16ADV0055	35.4	75.11	37	55.26
Giant Bajra (NC)	27.5	77.78	38	47.76
RBB-1 (NC)	36.7	71.78	37	48.49
AFB-3 (NWZ)	38.8	72.11		55.46
APFB-9-1 (NEZ)			37	
SE(m) ±	1.2	4.08	0.25	
C.D. (P=0.05)	3.4	11.66	NS	
N Levels (kg/ha)				
30	33.1	77.76	38	49.62
60	35.4	74.1	38	49.17
90	40.6	74.9	37	50.83
SE(m) ±	0.9	2.67	0.2	
C.D. (P=0.05)	2.6	NS	NS	
Interaction				
SE(m) ±	2.4		0.5	
C.D. (P=0.05)	NS		1.44	

Table K-21-AST-1 (l): Interaction effects of various pearl millet varieties and nitrogen levels on green fodder yieldat Anand

			(GFY (q/ha)					DMY (q/ha)								
Treatment	Giant Bajra (NC)	JPM- 18-7	BAIF Bajra- 7	RBB- 1(NC)	BAIF Bajra 1 (CZ)	Dev-1	16AD V0055	Mean	Treatment	Giant Bajra (NC)	JPM- 18-7	BAIF Bajra- 7	RBB-1	BAIF Bajra 1 (CZ)	Dev-1	16ADV0 055	Mean
30	465	532	433	403	556	571	583	506.1	30	72.22	71.9	67.89	58.65	88.84	106.71	90.3	79.5
60	523	625	621	433	600	617	639	579.7	60	93.7	95.29	102.79	68.28	100.34	117.22	102.55	97.2
90	543	694	641	461	633	633	662	609.6	90	106.44	132.58	111.09	76.66	122.92	137.66	115.31	114.7
	510.3	617.0	565.0	432.3	596.3	607.0	628.0			90.8	99.9	93.9	67.9	104.0	120.5	102.7	
SE(m) ±	23.14								SE(m) ±		4.36						
C.D. (P=0.05)	66.15					•			C.D. (P=0.05	5)	12.47						
CV %	7.09	7.09							CV %		7.78						

Table K-21-AST-1 (m): Interaction effects of various pearl millet varieties and nitrogen levels on Green forage yield at Mandya

		GFY (q/h	a)		DMY (q/ha)			
Varieties	N	Vitrogen levels	(Kg/ha)		1	Nitrogen levels (F	Kg/ha)	
	30	60	90	Mean	30	60	90	Mean
JPM-18-7	211.7	312.0	347.7	290.4	44.2	74.9	89.7	69.6
BAIF Bajra- 7	247.7	304.2	344.4	298.7	50.9	68.5	87.6	68.9
Dev-1	236.1	309.2	326.0	290.4	52.5	76.7	89.4	72.8
16ADV0055	237.5	252.6	271.4	253.9	50.4	59.3	72.7	60.8
Giant Bajra (NC)	151.7	244.6	312.3	236.2	29.7	53.1	74.9	52.5
RBB-1 (NC)	256.7	294.1	349.2	300.0	55.2	69.2	89.9	71.4
Moti Bajra (SZ)	230.1	243.5	280.7	251.4	49.2	56.8	71.4	59.2
Mean	224.5	280.0	318.8	-	47.4	65.1	82.2	-
	Particulars	SE(m) ±	C.D. (P=0.05)		Particulars	SE(m) ±	C.D. (P=0.05)	
	Varieties (A)	9.83	28.21		Varieties (A)	2.63	7.55	
	Nitrogen (B)	6.44	18.46		Nitrogen (B)	1.72	4.94	
	Interaction (A x B)	17.03	48.85		Interaction (A x B)	4.56	NS	

Table K-21-AST-1 (n): Interaction effects of various pearl millet varieties and nitrogen levels on GFY and DMY (q/ha) at Ludhiana

Genotypes		GFY (q/	(ha)			DMY (q/ha)	
		Nitrogen level	ls (kg/ha)			Nitrogen lev	els (kg/ha)	
	30	60	90	Mean	30	60	90	Mean
JPM-18-7	507.9	558.7	587.3	1653.9	50.79	61.46	64.60	176.9
BAIF Bajra- 7	482.5	514.3	557.1	1553.9	53.08	61.71	66.86	181.7
Dev-1	573.0	671.4	685.7	1930.1	74.49	73.86	75.43	223.8
16ADV0055	522.2	587.9	619.0	1729.1	67.89	70.55	74.29	212.7
Giant Bajra (NC)	428.6	527.0	558.7	1514.3	55.71	57.97	61.46	175.1
RBB-1 ((NC)	294.6	328.3	365.4	988.3	32.41	39.39	40.19	112.0
AFB-3 (NWZ)	417.5	421.9	451.7	1291.1	41.75	42.19	49.69	133.6
Mean	460.9	515.6	546.4	1522.9	53.73	58.16	61.79	173.7
	Particulars	SE(m) ±	C.D. (P=0.05)		Particulars	SE(m) ±	C.D. (P=0.05)	
	Varieties (A)	15.1	43.0		Varieties (A)	1.7	4.9	
	Nitrogen (B)	11.4	32.5		Nitrogen (B)	3.7	1.3	
	Interaction (A x B)	NS	30.1		Interaction (A x B)	9.8	3.4	

 $Table \ K-21-AST-1 \ (o): Interaction \ effects \ of \ various \ pearl \ millet \ varieties \ and \ nitrogen \ levels \ on \ Green \ forage \ Yield \ (q/ha) \ and \ Dry \ matter \ yield \ (q/ha) \ at \ Pantnagar$

			GFY	(q/ha)			DMY	(q/ha)		
Genotypes			Nitrogen le	vels (kg/ha		Nitrogen levels (kg/ha)				
	30	60	90	Mean	Genotypes	30	60	90	Mean	
JPM-18-7	460.9	544.4	577.6	527.6	JPM-18-7	97.2	113.2	118.3	109.6	
BAIF Bajra- 7	280.5	316.6	327.7	308.3	BAIF Bajra- 7	52.0	56.9	58.2	55.7	
Dev-1	616.4	676.7	691.4	661.5	Dev-1	142.9	152.5	150.5	148.6	
16ADV0055	535.8	606.7	682.2	608.2	16ADV0055	107.9	118.9	135.3	120.7	
Giant Bajra (NC)	338.8	361.0	380.4	360.1	Giant Bajra (NC)	64.9	69.0	71.9	68.6	
RBB-1 (NC)	304.1	340.4	345.2	329.9	RBB-1 (NC)	67.9	74.6	74.9	72.4	
AFB-3 (NWZ)	481.8	533.4	515.1	510.1	AFB-3 (NWZ)	102.3	114.9	109.4	108.8	
Mean B	431.2	482.7	502.8	472.2		90.7	100.0	102.6	97.8	
					Factors	C.D. (P=0.05)	SE(m) ±			
Factors	C.D. (P=0.05)	SE(m) ±			Factor(A)	7.0	2.5	_		
Factor(A)	32.0	11.2			Factor(B)	5.3	1.9			
Factor(B)	24.2	8.5			Factor(A X B)	N/A	4.9			
Factor(A X B)	N/A	22.5								

Table K-21-AST-1 (p): Interaction effects of various pearl millet varieties and nitrogen levels on Green Forage yield (q/ha) at Urulikanchan

Varieties /			Gree	en fodder yield	(q/ha)			
Nitrogen levels	Giant Bajra (NC)	JPM-18-7	BAIF	RBB-1 (NC)	BAIF	Dev-1	16ADV0055	Mean
			Bajra- 7		Bajra 1			
					(CZ)			
30 kg/ha	399.31	315.97	307.87	238.43	466.44	500.58	506.95	390.79
60 kg/ha	451.97	359.38	334.49	291.09	534.15	501.16	549.77	431.72
90 kg/ha	485.54	383.10	349.54	328.13	564.82	557.30	607.07	467.93
Mean	445.61	352.82	330.64	285.88	521.80	519.68	554.60	
	Variation (V)	Nitrogen	VxN					
	Varieties (V)	levels (N)	VXIN					
SE(m) ±	12.92	11.03	-					
C.D. (P=0.05)	40.26	32.12	NS					
CV	8.16	16.25	-					

Table K-21-AST-1 (q): Interaction effects of various pearl millet varieties and nitrogen levels on Dry matter Yield(q/ha) at Urulikanchan

Varieties / Nitrogen			Dry mat	ter yield ((q/ha)			
levels	Giant Bajra (NC)	JPM-18-7	BAIF Bajra- 7	RBB-1	BAIF Bajra 1 (CZ)	Dev-1	16ADV0055	Mean
				(NC)				
30 kg/ha	62.37	44.52	57.88	52.31	75.56	72.98	74.22	62.84
60 kg/ha	71.37	54.52	46.73	63.28	85.09	84.75	95.61	71.62
90 kg/ha	70.99	55.47	52.26	71.14	72.97	85.94	83.29	70.29
Mean	68.24	51.50	52.29	62.24	77.88	81.22	84.37	
	Varieties (V)	Nitrogen levels	VxN					
		(N)						
SE(m) ±	2.02	2.61	-					
C.D. (P=0.05)	6.30	5.37	NS					
CV	3.21	6.82	-					

Table K-21-AST-1 (r): Interaction effects of various pearl millet varieties and nitrogen levels on green fodder yield at Raipur

Treatment		GFY (q/ha)											
	Giant Bajra	JPM-18-7	BAIF Bajra-	RBB-1 (NC)	BAIF Bajra 1	Dev-1	16ADV0055	Mean					
	(NC)		7		(CZ)								
30 kg/ha	297.1	451.2	302.7	255.5	449.8	599.8	570.6	418.1					
60 kg/ha	398.5	499.8	404.0	272.1	545.6	591.4	642.8	479.2					
90 kg/ha	427.6	497.0	502.6	302.7	597.0	617.8	660.8	515.1					
Mean	374.4	482.7	403.1	276.8	530.8	603.0	624.7						
SE(m) ±													
C.D. (P=0.05)													
CV %													

Table K-21-AST-1 (s) Interaction effects of various pearl millet varieties and nitrogen levels on dry matter yield at Raipur

Treatment		DMY (q/ha)										
	Giant Bajra (NC)	JPM-18-7	BAIF Bajra-	RBB-1 (NC)	BAIF Bajra 1 (CZ)	Dev-1	16ADV0055	Mean				
30 kg/ha	61.2	90.7	56.6	49.3	101.0	123.3	119.5	85.9				
60 kg/ha	89.0	110.7	76.8	54.6	127.0	132.4	137.8	104.0				
90 kg/ha	109.8	113.7	115.2	61.3	131.4	141.2	146.9	117.1				
Mean	86.7	105.0	82.9	55.1	119.8	132.3	134.7					
SE(m) ±												
C.D. (P=0.05)												
CV %												

Annual Report Kharif-2021

Table K-21-AST-1 (t): Interaction effect of GFY (q/ha) and DMY (q/ha) of pearl millet entries and Nitrogen levels(AVTPM-2) at Hyderabad

Treatments		Green Forage	Yield(q/ha)			Dry mat	tter yield (q/ha)	
		Nitrogen lev	els (kg/ha)			Nitrogen	levels (kg/ha)	
	30	60	90	Mean	30	60	90	Mean
JPM-18-7	316.5	305.4	374.8	332.3	59.0	61.8	78.3	66.4
BAIF Bajra- 7	222.1	272.1	286.0	260.1	45.6	50.5	58.1	51.4
Dev-1	266.6	272.1	322.1	286.9	55.4	55.9	62.6	58.0
16ADV0055	266.6	277.7	283.2	275.8	53.1	60.2	59.2	57.5
Giant Bajra (NC)	186.0	197.2	224.9	202.7	36.4	40.3	45.5	40.7
RBB-1 (NC)	172.2	194.4	244.4	203.6	35.7	39.2	48.8	41.2
Moti Bajra (SZ)	286.0	283.2	280.4	283.2	56.4	57.8	58.8	57.6
InteractionVXN								
SE(m) ±	11.3				3.2			
C.D. (P=0.05)	32.5				NS			
CV(%)	7.4				10.3			

 $Table\ K-21-AST-1\ (u)\ Interaction\ effect\ of\ CP\ \%\ and\ CPY\ (q/ha)\ of\ pearl\ millet\ entries\ and\ Nitrogen\ levels (AVTPM-2)\ at\ Hyderabad$

Treatments		Crude Pi	rotein (%)			Crude prote	ein yield (q/ha)				
		Nitrogen le	evels (kg/ha)		Nitrogen levels (kg/ha)						
	30	60	90	Mean	30	60	90	Mean			
JPM-18-7	8.46	9.00	9.03	8.83	4.99	5.57	7.08	5.88			
BAIF Bajra- 7	7.56	7.13	8.46	7.72	3.45	3.60	4.91	3.99			
Dev-1	8.20	8.53	8.53	8.42	4.54	4.76	5.33	4.88			
16ADV0055	7.73	8.06	8.23	801	4.12	4.84	4.87	4.61			
Giant Bajra (NC)	7.43	8.46	7.13	7.67	2.70	3.40	3.25	3.11			
RBB-1 (NC)	7.73	8.20	8.63	8.18	2.77	3.23	4.21	3.40			
Moti Bajra (SZ)	8.90	8.73	8.46	8.70	4.99	5.02	4.97	4.99			
InteractionVXN											
SE(m) ±	0.22				0.301						
C.D. (P=0.05)	0.63				NS						
CV(%)	4.63				11.80						

K-21-AST-2: Effect of nitrogen levels on forage yield of promising entries of forage maize

[(Table Reference: K-21-AST-2(a) to (j)]

Locations (5): NWZ-Ludhiana, Hisar Pantnagar CZ- Anand, Raipur

A field trial AVTM-2 was conducted to find out the response of one promising entry and two checks of maize to graded doses of nitrogen. The study was undertaken at three locations in North West Zone and two locations in Central Zone with oneentry (PFM- 12), two national check-African Tall and J-1006 and one zonal check, IIMR hybrid COHM-8. All the entries were tested under four level of nitrogen application i.e. 40, 80, 120 and 160 kg/ha. The treatments were replicated thrice in Randomized Block Design. The gross plot size was 4 m x 3 m accommodating 4 m long 10 rows at 30 cm. The seed rate used was 50.0 kg/ha.

In NW zone entry PFM-12 did not perform well. It produced 386.89 GFY/ha. It recorded 4% & 10.1 % GFY lower GFY than checks COHM-8 and J-1106, respectively. In terms of DFY corresponding decrease was 2.1& 7.6%. In central zone the entry provided yield 661.7q GFY/ha and out yielded checks COHM and J-1106. However, it was on par with African tall (611.4) q/ha. In terms of DFY out yielded all the checks (115.20 q/ha) indicating 9.9% superiority over best checks- J-1006. On overall mean basis of all the locations in two zone, the entry PFM-12 provided superiority (98.39 q/ha) to checks COHM-8 and African tall But it remained on par with J-1006 (97.35 q/ha) in terms of dry matter. As regards to green fodder all the entries were on par with each other. The entry PFM-12 exhibited highest CP content of 6.65% in comparison 6.48 recorded in COHM-8. In terms of CP yield PFM-12 proved the best. The plant height, plant population and LS Ratio of PFM-12 were comparable to national checks. The growth parameters, herbage yield and crude protein yield increased consistently with increasing level of nitrogen up to 160 Kg N/ha. With the application of 160 kg N/ha, the green and dry matter yield increased by 25.2 and 28.6 per cent over 40 kg N/ha and 7.9&7.7 per cent over 120 kg N/ha. The response equation was worked out to $y = -0.0061x^2 + 2.2055x + 251.85$ (R² = 0.9999). The Calculated Y_{maxima} is 180.8 kg N/ha, whereas, Y_{optima}is 168.9 kg/ha (input cost Rs 16.0/ Kg, output cost Rs 1.10/ kg)

K-21-AST-2 (a): Effect of nitrogen levels on GFY (q/ha) of promising entries of forage Maize

Entries		· -	Gree	en Forage Y	Yield (q/ha)			
		NV	VZ			CZ		
	Ludhiana	Hisar	Pantnagar	Mean	Anand	Raipur	Mean	Overall
			_			_		Mean
PFM-12	347.6	389.38	423.44	386.8	779.0	444.3	611.7	476.7
J-1006 (NC)	424.0	405.97	465.11	431.7	803.0	351.6	577.3	489.9
African Tall (NC)	327.7	367.78	437.58	377.7	835.0	387.7	611.4	471.2
COHM-8 (NC)	369.5	358.33	479.23	402.4	775.0	407.8	591.4	478.0
SE(m) ±	10.2	5.94	6.70		15.21	6.78		
C.D. (P=0.05)	29.4	17.24	19.45		43.94	19.69		
N Levels (kg/ha)								
40	277.9	304.93	409.00	330.6	679.0	453.3	566.2	424.8
80	356.9	372.78	436.69	388.8	761.0	406.4	583.7	466.8
120	407.9	416.88	464.84	429.9	814.0	359.9	587.0	492.7
160	426.1	426.88	494.82	449.3	939.0	371.7	655.4	531.7
SE(m) ±	10.2	5.94	6.70		15.21	6.78		
C.D. (P=0.05)	29.4	17.24	19.45		43.94	19.69		
Interaction								
SE(m) ±	20.4	11.88	13.400			13.57		
C.D. (P=0.05)	NS	NS	N/A		NS	NS		

K-21-AST-2 (b): Effect of nitrogen levels on DMY (q/ha) of promising entries of forage Maize

Entries		` .	• 0		r yield (q/ha)			
		NW	${f Z}$	•		CZ		Overall Mean
	Ludhiana	Hisar	Pantnagar	Mean	Anand	Raipur	Mean	
PFM-12	73.10	104.80	83.64	87.18	135.00	95.40	115.20	98.39
J-1006 (NC)	83.80	108.18	85.28	92.42	136.00	73.50	104.75	97.35
African Tall (NC)	50.10	93.82	76.92	73.61	109.00	83.90	96.45	82.75
COHM-8 (NC)	62.70	95.58	109.26	89.18	104.00	86.30	95.15	91.57
SE(m) ±	1.90	1.98	1.45		2.99	2.98		
C.D. (P=0.05)	5.40	5.73	4.21		8.64	8.53		
N Levels (kg/ha)								
40	44.80	83.31	77.73	68.61	100.00	97.30	98.65	80.63
80	64.30	98.42	84.86	82.53	112.00	86.70	99.35	89.26
120	76.90	109.10	92.18	92.73	127.00	76.10	101.55	96.26
160	83.70	111.55	100.33	98.53	144.00	78.90	111.45	103.70
SE(m) ±	1.90	1.98	1.45		2.99	2.94		
C.D. (P=0.05)	5.40	5.73	4.21		8.64	8.53		
Interaction								
SE(m) ±	3.80	3.95	2.90			5.88		
C.D. (P=0.05)	10.90	NS	N/A		NS	NS		

K-21-AST-2 (c): Effect of nitrogen levels on GFY and DMY (q/ha/day) of promising entries of forage Maize

Entries		Green Forage			J	Dry matter		/day)
	Ludhiana	Pantnagar	Raipur	Ludhiana	Mean	Pantnagar	Raipur	Mean
PFM-12	4.97	6.72	8.28	1.04	5.25	1.33	1.78	1.56
J-1006 (NC)	6.06	7.38	6.54	1.20	5.30	1.35	1.37	1.36
African Tall (NC)	4.68	6.95	7.24	0.72	4.90	1.22	1.56	1.39
COHM-8 (NC)	5.28	7.61	7.61	0.90	5.35	1.73	1.61	1.67
SE(m) ±	0.15	0.11	0.13	0.03		0.02	0.05	
C.D. (P=0.05)	0.42	0.31	0.37	0.08		0.07	0.16	
N Levels (kg/ha)								
40	3.97	6.49	8.09	0.64	4.80	1.23	1.74	1.49
80	5.10	6.93	6.77	0.92	4.93	1.35	1.45	1.40
120	5.83	7.38	7.66	1.10	5.49	1.46	1.62	1.54
160	6.09	7.85	7.15	1.20	5.57	1.59	1.52	1.56
SE(m) ±	0.15	0.11	0.13	0.03		0.02	0.05	
C.D. (P=0.05)	0.42	0.31	0.37	0.08		0.07	0.16	
Interaction								
SE(m) ±	0.29	0.212	0.25	0.05		0.046	0.10	
C.D. (P=0.05)	NS	N/A	NS	0.16		N/A	NS	

K-21-AST-2 (d): Effect of nitrogen levels on quality of promising entries of forage Maize

E-4-i o a			Cru	de prote	ein yield	d (q/ha)			Crude Protein (%)						
Entries		NV	VZ			CZ		Overall	NWZ				C	Z	Mean
	Ludh-	His-	Pant-	Mean	Ana-	Rai-	Mean	Mean	Ludh-	His-	Pant-	Mean	Ana-	Rai-	
	iana	ar	nagar		nd	pur			iana	ar	nagar		nd	pur	
PFM-12	4.84	10.72	6.80	7.45	6.51	8.14	7.33	7.40	6.50	10.22	5.70	7.47	4.81	8.49	6.65
J-1006 (NC)	5.07	11.23	6.81	7.70	6.96	5.47	6.22	7.11	6.00	10.26	5.83	7.36	5.06	7.42	6.24
African Tall (NC)	3.13	9.92	7.93	6.99	5.17	6.4	5.79	6.51	6.20	10.48	6.11	7.60	4.75	7.62	6.19
COHM-8 (NC)	4.16	9.52	8.18	7.29	5.01	7.07	6.04	6.79	6.60	9.77	8.97	8.45	4.80	8.16	6.48
SE(m) ±	0.12	0.24	0.03		0.17	0.27				0.09	0.11		0.05	0.11	
C.D. (P=0.05)	0.35	0.70	0.08		0.48	0.79				0.27	0.33		0.14	0.32	
N Levels (kg/ha)															
40	2.66	7.50	7.11	5.76	4.78	7.95	6.37	6.00	5.90	8.89	5.55	6.78	4.77	8.14	6.46
80	3.91	9.78	7.31	7.00	5.37	7.32	6.35	6.74	6.10	9.99	6.23	7.44	4.78	8.34	6.56
120	4.87	11.84	7.52	8.08	6.11	5.8	5.96	7.23	6.40	10.85	6.96	8.07	4.80	7.60	6.20
160	5.77	12.27	7.78	8.61	7.38	6.01	6.70	7.84	6.90	10.99	7.87	8.59	5.08	7.60	6.34
SE(m) ±	0.12	0.24	0.03		0.17	0.27				0.09	0.11		0.05	0.11	
C.D. (P=0.05)	0.35	0.70	0.08		0.48	0.79				0.27	0.33		0.14	0.32	
Interaction															
SE(m) ±	0.25	0.48	0.226			0.54				0.19	0.058			0.22	
C.D. (P=0.05)	0.71	NS	N/A		Sign.	NS				NS	N/A		Sign.	NS	

K-21-AST-2 (e): Effect of nitrogen levels on growth parameters of promising entries of forage Maize

Entries			ght (CM) at	Harvest				Leaf Ste	em Ratio		
Entries	Ludh-	His-	Pant-	Rai-	Mean	Ludh-	His-	Pant-	Ana-	Rai-	Mean
	iana	ar	nagar	pur		iana	ar	nagar	nd	pur	
PFM-12	194.4	224.1	270.1	276.9	241.4	0.59	0.38	0.43	0.86	0.42	0.54
J-1006 (NC)	200.5	228.6	275.4	248.1	238.1	0.73	0.38	0.46	0.92	0.30	0.56
African Tall (NC)	189.2	213.1	271.1	261.7	233.8	0.59	0.35	0.42	0.92	0.36	0.53
COHM-8 (NC)	191.3	208.2	274.9	271.1	236.4	0.50	0.36	0.48	1.16	0.38	0.58
SE(m) ±	2.4	2.53	2.66	1.49		0.02	0.01	0.01	0.02	0.12	
C.D. (P=0.05)	6.9	7.34	NS	4.33		0.06	0.02	0.03	0.06	0.05	
N Levels (kg/ha)											
40	163.2	192.3	256.7	270.0	220.6	0.49	0.32	0.40	0.98	0.44	0.53
80	196.1	217.1	272.4	268.5	238.5	0.58	0.36	0.44	0.94	0.33	0.53
120	200.4	230.2	279.0	259.1	242.2	0.65	0.39	0.46	0.97	0.35	0.56
160	215.8	234.4	283.4	260.3	248.5	0.69	0.39	0.49	0.97	0.34	0.58
SE(m) ±	2.4	2.53	2.66	1.49		0.02	0.01	0.01	0.02	0.12	
C.D. (P=0.05)	6.9	7.34	7.71	4.33		0.06	0.02	0.03	NS	0.05	
Interaction											
SE(m) ±	4.8	5.06	5.313	2.98		0.04	0.01	0.02		0.37	
C.D. (P=0.05)	NS	NS	N/A	NS		NS	NS	0.07	NS	NS	

K-21-AST-2 (f): Effect of nitrogen levels on growth parameterspromising entries of forage Maize

Entries		Pla	nt Populati	$\frac{1}{2}$ on/m ² at 15	DAS		Pl	ant Populatio	n/m² at Harv	est		
		NWZ			CZ							
	Ludh-	Pant-	Mean	Ana-	Rai-	Mean	His-	Pant-	Rai-	Mean		
	iana	nagar		nd	pur		ar	nagar	pur			
PFM-12	23.6	2.54	13.07	6.55	18.08	12.32	9.72	2.15	17.67	9.85		
J-1006 (NC)	27.8	2.64	15.22	7.23	18.21	12.72	10.00	2.24	17.79	10.01		
African Tall (NC)	23.4	2.48	12.94	5.42	18.13	11.78	9.00	1.91	17.71	9.54		
COHM-8 (NC)	25.6	2.49	14.05	5.17	17.88	11.53	9.67	2.02	17.46	9.72		
SE(m) ±	0.6	0.03		0.28	0.61		0.25	0.03	0.46			
C.D. (P=0.05)	1.8	0.09		0.82	1.79		NS	0.08	1.32			
N Levels (kg/ha)												
40	22.8	2.54	12.67	6.43	20.96	13.70	9.56	2.09	20.25	10.63		
80	24.5	2.57	13.54	5.95	16.92	11.44	9.47	2.09	16.71	9.42		
120	25	2.54	13.77	6.08	16.33	11.21	9.80	2.08	16.13	9.34		
160	28.1	2.5	15.30	5.9	18.08	11.99	9.56	2.06	17.54	9.72		
SE(m) ±	0.6	0.33		0.28	0.61		0.25	0.03	0.46			
C.D. (P=0.05)	1.8	NS		NS	1.79		NS	NS	1.32			
Interaction												
SE(m) ±	1.3	0.07			1.23		0.50	0.06	0.91			
C.D. (P=0.05)	NS	N/A		NS	NS		NS	0.17	NS			

K-21-AST-2 (g): Effect of nitrogen levels on No. of Leaves at Harvest of promising entries of forage Maize

Entries		No. of Leaves at Harvest	
	Anand	Raipur	Mean
PFM-12	13.40	12.10	12.75
J-1006 (NC)	13.32	11.30	12.31
African Tall (NC)	14.00	11.40	12.70
COHM-8 (NC)	14.47	11.90	13.19
SE(m) ±	0.19	0.16	
C.D. (P=0.05)	0.53	NS	
N Levels (kg/ha)			
40	13.58	11.70	12.64
80	13.92	11.60	12.76
120	13.55	11.80	12.68
160	14.13	11.60	12.87
SE(m) ±	0.19	0.16	
C.D. (P=0.05)	NS	0.47	

K-21-AST-2 (h): Interaction Effect of nitrogen levels on GFY (q/ha) of promising entries of forage Maize at Pantnagar

E-4-2-			Nitrogen levels (kg/ha)		_
Entries	40 kg/ha	80 kg/ha	120 kg/ha	160 kg/ha	Mean A
PFM-12	403.267	411.600	437.367	441.533	423.442
J-1006 (NC)	408.233	448.787	484.267	519.133	465.105
African Tall (NC)	398.800	426.533	447.067	477.900	437.575
COHM-8 (NC)	425.700	459.833	490.667	540.700	479.225
Mean B	409.000	436.688	464.842	494.817	
Factors	C.D. (P=0.05)	SE(m) ±			
Factor(A)	19.445	6.700			
Factor(B)	19.445	6.700			
Factor(A X B)	N/A	13.400			

K-21-AST-2 (i): Interaction Effect of nitrogen levels on DMY (q/ha) of promising entries of forage Maize at Pantnagar

Entrica		\	Nitrogen levels (kg/ha	n)	0
Entries	40 kg/ha	80 kg/ha	120 kg/ha	160 kg/ha	Mean A
PFM-12	78.130	80.963	87.507	87.973	83.643
J-1006 (NC)	72.807	80.447	89.383	98.470	85.277
African Tall (NC)	66.073	73.223	78.943	89.427	76.917
COHM-8 (NC)	93.903	104.817	112.883	125.450	109.263
Mean B	77.728	84.863	92.179	100.330	
Factors	C.D. (P=0.05)	SE(m) ±			
Factor(A)	4.211	1.451			
Factor(B)	4.211	1.451			
Factor(A X B)	N/A	2.902			

K-21-AST-2 (j): Interaction Effect of nitrogen levels on CPY (q/ha) of promising entries of forage Maize at Anand

Entries		Nitrogen le	evels (kg/ha)	
Entries	40 kg/ha	80 kg/ha	120 kg/ha	160 kg/ha
PFM-12	9.65	6.24	5.67	7.98
J-1006 (NC)	4.93	4.11	4.34	5.76
African Tall (NC)	5.94	5.10	4.58	5.85
COHM-8 (NC)	7.32	5.23	5.43	6.48
SE(m) ±		0.	.33	
C.D. (P=0.05)		0.	.96	
CV%		9.	.71	

K-21-AST-3: Effect of nitrogen levels of forage yield of promising of Dinanath grass

[(Table Reference: K-21-AST-3 (a) to (e)]

Locations (3): Ranchi, Mandya and Imphal

A field trial AVTD-2 was conducted to find out the response of four promising entries- JHD-19-4, BAU-DN-110-18-2, BAU-DN-109-8, BAU-DN-103-18-2 and one national check (Bundel Dinanath-2) of Dinanath grass to three graded doses of nitrogen (30, 60 and 90 kg N/ha). The nitrogen was supplemented as half N as basal and remaining half N after 30 DAS. Basal application of 60:40 kg/ha P and K was made. The study was undertaken at three locations i.e., Ranchi, Mandya and Imphal in the country. The treatments were replicated thrice in Randomized Block Design. The gross plot size was 4 m x 3 m accommodating 4 m long 10 rows at 30 cm. The seed rate used was 4.0 kg/ha.

The results indicated that, on locational mean basis the national check produced maximum green and dry forage yields of 262.4 and 52.56q/ha, respectively. It was closely followed by entries BAU-DN-103-18-2 (249.5 and 49.78 q/ha) and JHD-19-4(248.7 and 52.81 q/ha). At Mandya centre JHD-19-4demonstrated significant superiority over reaming entries as well a check.BAU-DN-103-18-2 exhibited highest CP contest of 9.85 as well asCPyield (4.71q/ha) on locational mean basis.

The growth parameters, herbage yield and crude protein content and yield increased consistently with increasing level of nitrogen up to 90 Kg N/ha. With the application of 90 kg N/ha, the green and dry matter yield increased by 36.4 and 57.0 per cent over 30 kg N/ha and 10.7 and 17.9 per cent over 60 kg N/ha respectively. The response equation was worked out to $y = -0.0112x^2 + 2.5583x + 133.9(R^2 = 0.997)$. The Calculated Y_{maxima} is 114.3 kg N/ha, whereas, Y_{optima} is 107.7 kg/ha (input cost Rs 16.0/ Kg, output cost Rs 1.10/ kg)

K-21-AST-3 (a): Effect of nitrogen levels on biomass yield of promising entries of Dinanath grass

	G	reen Forage	Yield (q/ha	a)	Ī	Ory Matter Y	ield (q/ha)		GFY	DMY
Varieties									(q/ha/day)	(q/ha/day)
	Ranchi	Mandya	Imphal	Mean	Ranchi	Mandya	Imphal	Mean	Ranchi	Ranchi
JHD-19-4	347.3	305.1	93.6	248.7	61.30	73.23	23.90	52.81	5.34	0.94
BAU-DN-110-18-2	340.8	217.9	88.9	215.9	60.22	49.94	18.80	42.99	5.24	0.93
BAU-DN-109-8	365.1	224.4	88.3	225.9	64.55	54.24	20.50	46.43	5.62	0.99
BAU-DN-103-18-2	416.1	254.1	78.3	249.5	73.40	58.44	17.50	49.78	6.40	1.13
Bundel Dinanath-2 (NC)	436.7	257.6	92.8	262.4	76.96	60.62	20.10	52.56	6.72	1.18
SE(m) ±	6.15	8.03	1.36		1.1	2.38	0.89		0.09	0.02
C.D. (P=0.05)	17.9	23.39	3.95		3.21	6.94	2.59		0.27	0.04
N Levels (kg/ha)										
30	336.5	200.1	65.1	200.6	59.32	39.57	14.10	37.66	5.18	0.91
60	378.6	258.9	104.2	247.2	66.90	60.43	23.10	50.14	5.83	1.03
90	428.5	296.7	95.8	273.7	75.64	78.45	23.30	59.13	6.59	1.16
SE(m) ±	4.76	6.22			0.86	1.85			0.07	0.01
C.D. (P=0.05)	13.8	18.13			2.49	5.38			0.21	0.03
Interaction										
SE(m) ±	10.65	13.91			1.91	4.13			0.16	0.03
C.D. (P=0.05)	NS	NS			NS	NS			NS	NS

K-21-AST-3 (b): Effect of nitrogen levels on Crude protein content, Yield and growth parameters of promising entries of Dinanath

grass

Varieties Varieties		Crude Protein Yield (q/ha/day)			Crude Protein (%)			Plant population/ m ² at 15 DAS	Plant population/m ² at Harvest
	Ranchi	Imphal	Mean	Ranchi	Imphal	Mean	Mandya	Ranchi	Ranchi
JHD-19-4	4.37	2.20	3.29	7.11	9.40	8.26	24.16	93	349
BAU-DN-110-18-2	4.89	1.70	3.30	8.11	9.10	8.61	22.60	88	354
BAU-DN-109-8	4.10	1.90	3.00	6.32	9.20	7.76	23.82	91	414
BAU-DN-103-18-2	7.81	1.60	4.71	10.60	9.10	9.85	22.42	93	460
Bundel Dinanath-2 (NC)	4.90	1.90	3.40	6.32	9.20	7.76	23.21	88	494
SE(m) ±	0.08	0.09		0.06	0.11		0.41	0.85	6.19
C.D. (P=0.05)	0.25	0.26		0.17	0.31		1.91	2.47	18.02
CV (%)		8.37			2.02				
N Levels (kg/ha)									
30	4.37	1.30	2.84	7.34	9.20	8.27	19.85	91	369
60	5.16	2.10	3.63	7.69	9.20	8.45	23.37	92	410
90	6.11	2.10	4.11	8.05	9.20	8.63	26.51	88	463
SE(m) ±	0.07			0.04			0.32	1.42	4.79
C.D. (P=0.05)	0.96			0.13			0.92	NS	13.96
Interaction									
SE(m) ±	0.15			0.02			0.71	1.47	10.72
C.D. (P=0.05)	NS			NS			NS	NS	31.24

K-21-AST-3 (c): Effect of nitrogen levels on Plant height and Leaf Stem Ratio of promising entries of Dinanath grass

Varieties			t height (cm)		Leaf stem ratio						
	Ranchi	Mandya	Imphal	Mean	Ranchi	Mandya	Imphal	Mean			
JHD-19-4	127.5	96.0	193.0	138.8	0.48	0.27	0.24	0.33			
BAU-DN-110-18-2	128.2	75.4	172.3	125.3	0.43	0.19	0.30	0.31			
BAU-DN-109-8	122.4	79.7	183.4	128.5	0.44	0.21	0.23	0.29			
BAU-DN-103-18-2	130.2	87.0	175.1	130.8	0.40	0.22	0.22	0.28			
Bundel Dinanath-2 (NC)	139.8	84.1	187.1	137.0	0.41	0.22	0.24	0.29			
SE(m) ±	1.77	2.23	3.15		0.01	0.01	0.01				
C.D. (P=0.05)	5.15	6.49	9.13		0.02	0.02	0.04				
N Levels (kg/ha)											
30	119.1	68.6	181.5	123.0	0.43	0.20	0.26	0.30			
60	129.7	87.0	177.5	131.4	0.42	0.22	0.25	0.30			
90	140.1	97.8	187.7	141.8	0.45	0.24	0.23	0.31			
SE(m) ±	1.37	1.73			0.01	0.01					
C.D. (P=0.05)	3.99	5.03			NS	0.01					
Interaction											
SE(m) ±	3.06	3.86			0.02	0.011					
C.D. (P=0.05)	8.91	NS			0.05	NS					

Table K-20-AST-2 (d): Interaction effect of nitrogen levels on Green forage and Dry matter yield of promising entries of Dinanath Grass at Mandya

Varieties		Green forage	yield (q/ha)		D	ry matter yi	eld (q/ha)		
		Nitrogen leve	els (Kg/ha)		Nitrogen levels (Kg/ha)				
	30	60	90	Mean	30	60	90	Mean	
JHD-19-4	236.07	316.70	363.47	305.11	43.87	72.67	96.83	73.23	
BAU-DN-110-18-2	172.43	222.70	258.70	217.94	33.53	52.30	64.00	49.94	
BAU-DN-109-8	180.40	233.10	259.80	224.43	38.03	54.57	70.13	54.24	
BAU-DN-103-18-2	196.77	261.27	304.28	254.10	38.80	62.37	83.27	58.44	
Bundel Dinanath-2 (NC)	214.80	260.50	297.43	257.58	43.60	60.23	78.03	60.62	
Mean	200.09	258.85	296.73	-	39.57	60.43	78.45	-	
	Particulars	$SE(m) \pm$	C.D. (P=0.05)		Particulars	SE(m) ±	C.D. (P=0.05)		
	Varieties (A)	8.03	23.39		Varieties (A)	2.38	6.94		
	Nitrogen (B)	6.22	18.13		Nitrogen (B)	1.85	5.38		
	Interaction (A x B)	13.91	NS		Interaction (A x B)	4.13	NS		

Table K-20-AST-2 (e): Interaction effect of nitrogen levels on Green forage and Dry matter yield of promising entries of Dinanath Grass at Imphal

Varieties		Green foraș	ge yield (q/ha)			Dry matter yield (q/ha) Nitrogen levels (Kg/ha					
		Nitrogen l	evels (Kg/ha)								
	30	60	90	Mean	30	60	90	Mean			
JHD-19-4	68.0	112.5	100.2	93.6	16.0	25.7	29.9	23.9			
BAU-DN-110-18-2	59.3	105.3	102.3	88.9	12.3	18.4	25.8	18.8			
BAU-DN-109-8	70.3	97.9	96.5	88.3	14.0	24.2	23.2	20.5			
BAU-DN-103-18-2	59.8	98.0	77.1	78.3	12.2	22.5	17.8	17.5			
Bundel Dinanath-2 (NC)	68.0	107.3	103.1	92.8	16.1	24.6	19.6	20.1			
Mean	65.1	104.2	95.8		14.1	23.1	23.3	-			
SE(m) ±	1.36				SE(m) ±	0.89					
C.D. (P=0.05)	3.95				C.D. (P=0.05)	2.59					
CV (%)	2.67				CV (%)	7.68					

FORAGE CROP PROTECTION KHARIF 2021

PPT 1: Monitoring of diseases and insect pests in kharif forage crops

Part-1: Monitoring of diseases and insect-pests in kharif forage crops at the main station Objective: To record the occurrence and abundance of major diseases and insect-pests in sorghum, maize, bajra, cowpea and Bajra X Napier hybrid

Locations: Ludhiana, Rahuri, Palampur, Jhansi, Bhubaneswar, Coimbatore

Plot size: 4x4 m² per crop Replication: 4 per crop

Observations: Disease/insect-pest progression on kharif forages starting from date of appearance till crop maturity at weekly interval on 10 randomly selected plants per replication per crop using standard rating scale and calculation of disease severity/incidence/insect damage.

Results Location - Ludhiana PEARL MILLET

Leaf Blast:

Leaf blast of pearl millet started appearing in the end of July. Disease progressed at alarming rate during the crop season till end of September with maximum disease severity of 57.3% (Table Ludhiana PPT 1a).

Downy mildew:

The incidence of downy mildew was observed from 2nd week of August to end of September. The maximum incidence of downy mildew was 27.3% (Table Ludhiana PPT 1a).

SORGHUM

Grey leaf spot:

Grey leaf spot appeared in the last week of July. The maximum disease severity was 46.3% (Table Ludhiana PPT 1a).

Zonate leaf spot: The occurrence of zonate leaf spot on sorghum was very less i.e. 21.0% and it appeared late in the season.

Anthracnose:

Anthracnose was observed in the 2nd week of July. Maximum disease severity of anthracnose was 43.6% (Table Ludhiana PPT 1a).

MAIZE

Leaf blight: Disease appeared in the 2nd week of July and progressed slowly upto end of September with severity of 44.0%. Thereafter, as the crop reached physiological maturity, disease progressed at a steady pace (Table Ludhiana PPT 1a).

Table Ludhiana PPT-1a: Percent severity of diseases associated with pearl millet, maize and sorghum

Crop/	Name of	Percen	t Disease	Incidend	ce / Sever	ity in diff	erent SM\	Ns (Stan	dard Met	eorologic	al Week)	
variety	disease	29	30	31	32	33	34	35	36	37	38	39
Sorghum/	Anthracnose (Colletotrichum sublineolum)	0.0	5.5*	11.7	18.5	22.5	27.9	35.3	37.6	40.5	42.3	43.6
SL 44	Grey leaf spot (Cercospora sorghi)	5.1*	11.5	14.8	17.3	21.3	26.5	30.5	35.3	42.5	44.7	46.3
Maize/ J 1006	Leaf blight (<i>Bipolaris</i> <i>maydis</i>)	5.4*	7.7	12.3	18.7	24.3	28.0	32.5	37.7	41.2	43.4	44.0
Bajra/	Leaf Blast (Pyricularia grisea)	5.7*	9.7	16.5	25.6	31.5	38.4	42.5	48.3	51.4	55.7	57.3
FBC 16	Downy mildew (Sclerospora graminicola)				2.5*	5.0	9.7	12.4	16.9	21.5	25.3	27.3

^{*} Week of appearance

Incidence of different insect pest in Kharif forages at Ludhiana:

The population of sorghum shoot fly started appearing in the month of June (25th SMW). The attack of this pest starts after one week of sowing and was reported to be in range of 10-46% deadhearts in sorghum across different meteorological weeks. The stem borer population also started appearing in the month of June and peak population was observed in the month of July in both maize and sorghum with slightly higher pest incidence on maize. The sporadic attack of rice grasshopper in pearl millet, Bajra Napier hybrid was recorded in the second fortnight of July. The spotted pod borer, *Maruca vitrata* in cowpea was observed. It was observed in the month of September (Table Ludhiana PPT 1b).

Table Ludhiana PPT-1b: Incidence of different insect-pest in Kharif forages

Name of Insect	Crop			Obse	ervation	(Standa	rd Mete	orologica	l week)		
	-	25	26	27	28	29	30	31	32	33	34
Shoot fly	Sorghum	20	20	22	28	38	46	38	22	20	10
(% dead hearts)											
Maize borer	Sorghum	4	4	6	8	5	5		5	4	3
(% deadhearts)											
Maize borer	Maize	8	9	10	12	9	7	7	6	4	3
(% dead hearts)											
SMW		29	30	31	32	33	34	35	36	37	38
Grasshopper (adults/10	Pearl millet	0.2	0.4	8.0	1.2	1.5	1.7	2.0	1.8	1	0.2
plants)											
Grasshopper (adults/5	Bajra Napier	0.5	0.8	2.5	3.2	3.5	4.0	3.8	2.7	1.8	0.8
plants)	-										
SMW		32	33	34	35	36	37	38	39	40	41
Defoliators (Hairy caterpillars/	Cowpea	-	0.1	0.3	0.6	1.0	1.0	0.8	0.6	0.2	0.1
plant)											
Cowpea aphid	Cowpea	2	5	10	12	10	4	2	-	-	-
(adults per twig)											
Spotted pod borer (Maruca	Cowpea	-	-	-	-	-	-	-	3	3.5	3.2
(larvae/ 5 pods)											

Location- Palampur

At Palampur, wilt-root rot complex (75%) and leaf spot & blight (37%) were the major diseases of cowpea, whereas, pod borer and aphids were also observed with mild intensity (10% and 5% respectively). In maize, leaf bight (20%), Banded leaf and sheath blight (5%) were the major diseases along with stem borer (3% incidence). Sorghum was severely infected with zonate leaf spot having 60% disease severity. Leaf blast (30%) in Bajra was observed as major disease (Table Palampur PPT-1a).

Table Palampur PPT-1a: Seasonal occurrence of the insect pests and diseases on kharif forage crops

Crop	Diseases and insect pest	9		y /incio diffe dard M	erent S	MWs		
		33	34	35	36	37	38	39
Cowpea	Wilt/root rot (Fusarium oxysporum, Phytophthora vignae)	60	75	75	-	-	-	-
	Anthracnose (Colletotrichum lindemuthianum) and other minor leaf	10	20	25	30	30	33	37
	diseases (Septoria vignae, Cercospora etc.)							
	Pod borer/Defoliators	-	5	5	8	10	10	10
	Aphids (Aphis craccivora)	•	2	3	5	5	5	5
Maize	Leaf Blight (Exserohilum turcicum)	10	10	12	15	15	20	20
	Banded leaf & sheath blight (Rhizoctonia solani f. sp. sasakii)	1	1	2	2	4	5	5
	Maize stem borer (Chilo partellus)		-	1	1	1	2	3
Sorghum	Zonate leaf spot (Gloeocercospora sorghi)	30	30	40	45	45	50	60
Bajra	Blast (Pyricularia grisea)	10	10	15	18	20	25	30

Location: Rahuri

The per cent dead hearts of shoofly ranged between 1.90 to 31.90%. The aphid (0.30 to 3.30 score) and rust severity of 25.33 to 35.22% were noticed.

In maize, fall army worm damage (29.89 to 74.89%); maydis leaf blight (11.11 to 45.31% severity) and *Curvularia* leaf spot (7.09 to 36.20%) were recorded.

In case of pearl millet the percent dead hearts of stemfly were in the range of 4.80 to 31.40% and downy mildew ranged from 10.60 to 41.40%.

In cowpea, low to moderate level of infestation of aphids per plant (ranged-2.39 to 7.61 score) was noticed. Similarly, defoliators were also observed at low to moderate level (range-1.0 to 2.2/m²) while the population of blister beetles was in the range of 1.1 to 2.1/ m². The incidence of yellow mosaic virus (range 2.20 to 23.64%) and leaf spot (range 9.09 to 23.64%) was of low to moderate level. In Grasses very low incidence of insect pests were observed (Table Rahuri PPT 1a).

Location: Bhubaneswar

At Bhubaneswar, Wilt-root rot complex (24%), leaf spot (34%) and yellow mosaic virus (28%) were the major diseases of cowpea, whereas leaf defoliators and aphids were also observed with intensity of 34% and 20% respectively. In Maize, leaf bight (24%), Banded leaf and sheath blight (16%) were the major diseases along with fall army worm incidence of with 44%. Bajra was infected with blast having 20% severity and foliage feeder damage of 12% respectively. In Rice bean, incidence of leaf defoliators (18%), leaf spot (18%), root rot (28%) and yellow mosaic virus YMV (14%) were the major diseases recorded.

Location: Coimbatore

Sorghum

Anthracnose: Anthracnose was observed during September first and second week with maximum disease severity of 25.33 and 22.50% respectively. The disease incidence then reduced upto 2.33% during third week of October.

Shoot bug (*Peregrinus maidis*): It was observed during first and second week of August. The number of nymphs and adults per plant observed were 2.44 and 2.33 respectively during the above said period.

Maize

Fall armyworm (Spodoptera frugiperda): The percent damage was ranged from 20.22 to 30.42% and the maximum damage (30.42%) was observed during third week of July.

Pearlmillet

No severe pests and disease was observed in pearlmillet.

Cowpea

Aphids (*Aphis craccivora*): The population of aphids was observed during August. The first two weeks of August recorded 7.33 and 10.66 aphids per plant respectively.

Yellow Mosaic Virus: There was no significance occurrence of YMV during the study period.

Defoliator: There was no significance occurrence of defoliator record and flea beetle damage was observed during initial stage of the crop.

Perennial grasses:

Among the perennial grasses *viz.,Cenchrus sp*, guinea grass and Bajra napier, leaf folder was recorded in *Cenchrus* sp. (0.33-0.4 per plant) and spittle bug was recorded in bajra napier hybrid.

Location: Jhansi

Defoliators (upto 44.5 % damage) were major insect-pests of cowpea. No incidence of disease in cowpea was observed. In Maize, fall armyworm damage of 51.3% was noticed. Bajra was severely infected with leaf blast with severity as high as 59.8%. Sorghum was severely infected with zonate leaf spot having 62.7% disease severity (Table Jhansi PPT 1).

Table Rahuri PPT-1a: Seasonal occurrence of the insect pests and diseases on kharif forage crops

SMW		Sorghum			Maize		Bajra			Cowpea		
	Shoot fly	Aphids	Rust	S.	Curcularia	Maydis leaf	Shoot fly	Aphids	Blister	Defoliator	YMV	Cercospora
	(Atherigo	(Melanaphis	(Puccinia	frugiperda	leaf spot	blight	(Atherigona	(Aphis	beetles/	$/ m^2$	(%	leaf spot
	na	sacchari)	`purpurea	(%	(Curvularia	(Bipolaris	approximata)	craccivora)	m ²		severi	(Cercospora
	soccata);	(Score))	damage)	lunata)	maydis)	damage	/ plant			ty)	canescens)
	Incidence		,		(% severity)	(%	(%)					(% severity)
	(%)					severity)						
27	13.40	0.00	0.00	39.76	0.00	8.89	21.60	5.83	0.0	1.0	0.00	0.00
28	21.60	0.40	0.00	36.56	0.00	10.00	26.20	3.74	0.0	1.0	0.00	0.00
29	24.20	0.60	0.00	29.89	0.00	11.11	29.00	3.51	0.0	1.1	0.00	0.00
30	31.90	0.80	0.00	50.44	0.00	12.22	31.40	6.31	0.0	1.2	0.00	0.00
31	19.60	1.40	0.00	57.78	0.00	13.33	21.30	7.31	0.0	1.5	2.20	9.09
32	7.09	2.30	0.00	56.89	7.09	14.44	12.50	7.43	0.0	1.6	11.09	10.42
33	1.90	3.30	0.00	49.33	7.98	15.56	4.80	7.61	0.0	2.0	13.42	11.87
34	0.00	2.80	25.33	40.22	9.89	17.33	0.00	3.34	0.0	1.0	14.76	13.87
35	0.00	0.90	29.44	34.47	10.67	20.59	0.00	2.39	0.0	1.2	16.78	16.11
36	0.00	0.60	30.33	40.33	18.33	23.78	0.00	3.01	0.0	1.4	20.11	16.00
37	0.00	0.30	32.89	48.89	21.98	25.78	0.00	2.60	1.1	2.0	20.00	16.89
38	0.00	0.00	34.67	54.80	29.63	39.78	0.00	3.37	1.2	2.2	22.20	17.53
39	0.00	0.00	35.22	74.89	36.20	45.31	0.00	3.13	2.0	2.0	23.09	17.98

Table Bhubaneswar PPT-1(a): Seasonal occurrence of the insect pests and diseases on kharif forage crops

Crop	Diseases and insect pest					cidence (%) red		ent SMWs		
					(S	tandard Meteor	ological Week)		
		33	34	35	36	37	38	39	40	41
Cowpea	Wilt/root rot (Fusarium oxysporum, Phytophthora vignae)	-	04	12	18	24	-	-	-	-
	Leaf spot (Septoria vignae, Cercospora etc.)	-	2	6	10	16	24	34	-	-
	Yellow mosaic virus	-	-	-	-	2	4	10	14	28
	Aphids (Aphis craccivora)	-	-	-	-	2	4	8	14	20
	Leaf defoliators	-	-	2	6	10	12	24	28	34
Maize	Blight (Bipolaris maydis)	-	-	2	4	6	10	16	22	24
	Banded leaf & sheath blight (Rhizoctonia solani f. sp. sasakii)	-	-	-	2	4	6	8	12	16
	Maize fall armyworm (S. frugiperda)	-	5	8	14	18	24	30	36	44
Rice bean	Leaf defoliators	-	-	2	4	6	14	18	-	-
	Leaf spot (Cercospora sp.)	-	-	2	4	10	12	16	18	-
	Root rot (Rhizoctonia solani)	2	5	8	10	16	20	28	-	-
	Yellow mosaic virus	-	-	-	-	2	4	6	8	14
Bajra	leaf blast (Pyricularia grisea)	-	-	-	2	4	8	12	16	20

Table Coimbatore PPT-1(a): Seasonal occurrence of the insect pests and diseases on kharif forage crops

SMW	Sor	ghum	Maize	Bajra		Cowpea		Perennial	Grasses
	Anthracnose	Shoot bug	S. frugiperda	Shoot fly	Aphids	YMV	Defoliator	Cenchrus sp.	Bajra Napier
		(Peregrinus	(% damage)	(Atherigona	(Aphis	(% severity)	No. of		hybrid
		maidis)		approximata)	craccivora)		larvae /		
		(No. of nymphs		damage	(No. of		plant	Leaf folder	Spittle bug
		and adults/plant)		(%)	aphids/plant)			No. of	No. of
								larvae/plant	nymphs and
									adults/plant
28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
29	0.00	0.00	30.42	0.00	0.00	0.00	0.00	0.00	0.00
30	0.00	0.00	25.33	0.00	0.00	0.00	0.00	0.00	0.00
31	0.00	0.00	26.33	0.00	0.00	0.00	0.00	0.33	0.00
32	0.00	2.44	25.22	0.00	7.33	0.00	0.00	0.40	2.33
33	0.00	2.33	20.22	0.00	10.66	0.00	0.00	0.33	2.66
34	0.00	0.00	25.33	0.00	0.00	0.00	0.00	0.00	3.00
35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.33
36	25.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
37	22.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
38	15.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
39	5.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
40	5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
41	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
42	2.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
43	2.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table Jhansi PPT 1: Seasonal occurrence of the insect pests and diseases on kharif forage crops

Crop	Diseases and insect pest	Severi	ity/incidence	damage (%	6) of diseas	es and insec	t-pests reco	rded in diffe	erent SMWs (Standar	d Meteorological
						V	Veek)			
		31	32	33	34	35	36	37	38	39
Cowpea	Defoliators	0	3.5	10	18.3	25.0	32.8	35.5	41.3	44.5
Maize	Fall armyworm (S. frugiperda)	0	2.5	11.3	21.2	27.5	35.8	42.8	47.2	51.3
Pearl millet	Blast (Pyricularia grisea)	0	0	0	4.4	13.3	24.5	46.7	52.5	59.8
Sorghum	Zonate leaf spot (Gloeocercospora sorghi)	0	5.3	19.3	23.0	32.2	37.0	48.9	53.8	62.7

PPT 1: Monitoring of diseases and insect pests in kharif forage crops

Part-2: Survey of diseases and insect-pests in kharif forage crops

Locations: Bhubaneswar, Coimbatore, Palampur, Rahuri and Ludhiana

Methodology

Disease/insect-pest incidence to be recorded on kharif forages during the peak season on 15 locations/farmer's field surrounding the center. Data must be recorded either as presence or absence of disease/insect-pest in a particular crop. If it is absent mark it as "0" and if it is present, then note the percent severity/incidence/insect-pest damage along with name of crop, disease/insect-pest, date of observation and name of location.

Results

Ludhiana

In Ludhiana, survey was conducted in adjoining areas of Ludhiana and nearby four districts of Punjab like Roopnagar, Ferozepur and Moga. Major fodder crops observed in farmers' fields were sorghum, maize and pearl millet during the survey. In sorghum, severity of foliar diseases anthracnose, zonate leaf spot and grey leaf spot was recorded in the range of $0.0-40.0,\ 0.0-12.5$ and 0.0-46.0% respectively. Shoot fly dead hearts were observed in the range of 8.0-50.0% whereas, fall army worm incidence was also recorded (0.2-2.0%) in some places. In case of fodder maize, leaf blight severity was 0.0-25.5% and fall army worm incidence was ranged between 2.0-25.0%. In pearl millet, leaf blast was 0.0-32.0% and fall army worm infestation was 0.2-1.5% (Table Ludhiana PPT 1c).

Palampur

In District Kangra at different locations major diseases of maize were blights (10-30%) and BLSB (1-10%). In Pearl millet, leaf blast severity was observed 5- 30 per cent. In Sorghum, the major disease was zonate leaf spot (10-35%) and in cowpea root rot incidence was observed between 15-40% (Table Palampur PPT 1b).

Rahuri

During *Kharif* 2021, survey was carried out at 15 different villages adjacent to Rahuri and Sangamner and the incidence/infestation of insect-pests and diseases were noted on different *Kharif* crops. In sorghum crop per cent dead hearts of shoofly ranged from 6.0 to 12.7% and leaf blight (0.6 to 2.8 score) were recorded. In maize, incidence of fall army worm, *S. frugiperda* were observed at low to moderate level (Range 1.2 to 5.0 score), while leaf spot were noticed in the range of 1.4 to 3.0 score at late stage. In pearl millet, per cent dead hearts of stem fly was found in the range of 1.0 to 4.2%. In case of cowpea, aphids infestation were observed low to moderate level (ranged-0.2 to 5.4 score). Similarly, defoliators were observed at low level (range-1.0 to 2.0 per m²). The incidence of yellow mosaic virus were in the range of 1.0 to 1.8 score. In Bajra Napier hybrid very negligence of insect pest were noticed (Table Rahuri PPT 1b).

Bhubaneswar

During *Kharif* 2021, 15 villages under 3 districts of Odisha (Khordha,Puri and Cuttack) were surveyed to study the incidence /severity of disease pest in forage crops. In maize, maydis leaf blight, fall army worm & BLSB were recorded with severity of 26.0, 36.2 and 20.5% respectively. Severity of pearl millet blast was recorded in the range of 8.4-23.4%. In cowpea, as high as 18.2% root rot, 22% mosaic incidence were recorded where as in ricebean the highest root rot and mosaic incidence recorded were 16.8 & 14.4% respectively (Table Bhubaneswar PPT 1b).

Coimbatore

Roving Survey was carried out for the occurrence of insect pests in fodder crops at fifteen farmers field of Coimbatore and Tirupur districts. Shoot bug occurrence was noticed in bara napier hybrid during August first, second and third week with the mean population of 2.33, 2.66 and 3.00/plant respectively (Table Coimbatore PPT 1b).

Table Ludhiana PPT 1c: Survey of diseases and insect-pests in kharif forage crops in Punjab

District	Date of	Name of			Sorghum			M	aize	Pe	arl millet
	survey	location	Anthracnose	Zonate	Grey	Sorghum	Fall	Maydis	Fall	Leaf	Fall
			severity (%)	leaf	leaf spot	shoot fly	armyworm	leaf blight	armyworm	blast	armyworm
				spot	severity	% dead	%	(%)	%	(%)	% infestation
				(%)	(%)	hearts	infestation		infestation		
Ludhiana	26.08.21	Kohara	40.0	0	42.5	20	0.2	11.0	5	21.0	0.2
		Macchiwara	31.2	0	35.5	10	0.2	12.5	10	15.5	0.2
		Panjeta	15.5	0	25.0	15	0.5	5.0	20	25.0	1.5
		Iraq	10.0	0	8.4	10	0.5	10.0	10	5.5	0.2
		Garibet	5.0	0	5.5	20	0.5	4.7	4.0	12.3	1.0
		Mullanpur	14.2	10.5	15.5	20	1.0	5.5	20	5.5	0.5
		Mandiani	24.3	0	34.5	25	1.0	14.9	25	15.0	3.0
		Talwandi khurd	33.5	0	42.2	30	0.5	20.3	8	25.0	0
		Talwandi kalan	0	12.5	0	20	0.75	19.0	12	32.0	0.5
		Kokri	0	5.0	0	35	1.0	21.5	5	21.0	0
		Jagraon	25.7	0	33.5	50	1	5.5	5	22.0	0.2
Moga	26.08.21	Bijsar	0	0	0	20	1.5	5.0	5	23.5	0.2
		Kokri kalan	14.7	0	17.7	25	1.0	0	8	18.4	0
		Kot Ise Khan	12.6	0	28.2	25	0.5	0	5	18.3	0
		Jalalabad	0	0	0	10	1.0	0	2.5	21.0	0
		Jallekhan	0	6.3	0	20	2.0	0	2	32.0	0
		Zira	0	0	0	8	1.5	0	22	15.0	1.0
Ferozepur	26.08.21	Jhatra	9.5	0	9.5	30	5	0	25	21.0	1.2
		Balkhandi	8.5	0	16.0	15	3	0	20	18.0	0.5
		Jagram	18.3	5.5	28.5	25	0	0	4	10.0	0
		Phabian	23.0	0	32.6	15	0.2	0	5	11.3	0
		Mjapurhass	9.0	0	26.0	20	0	0	0	21.5	0

Roopnagar	29.09.21	Machhiwarakham	5.0	0	9.0	25	0	5.5	20	10.0	0.5
		Chaklohat	0	0	0	30	0	9.5	0	0	0
		Behrampur	0	7.4	0	40	5	11.3	30	0	0
		Bazidpur	27.3	0	25.0	60	5	15.3	35	0	1.5
		Bela	36.5	0	46.0	40	0	18.0	30	0	1
		Morinda	22.0	0	27.0	30	0.5	20.1	25	0	1.0
		Khamano	14.0	0	15.6	20	0	25.5	35	0	1
		Sangatpur	8.5	6.5	15.5	25	0.5	0	25	18.0	1.0
		Kotlasamaspur	5.0	4.5	18.0	25	0.5	0	15	20.5	0.5
		Ghulal	5.0	0	9.0	20	0.5	0	20	16.5	0.5

Table Palampur 1b: Survey of diseases of fodder crops in Kangra district of Himachal Pradesh

Place	Maize	<u> </u>	Sorghum	Bajra	Cowpea
	Leaf Blights	BLSB	Zonate leaf spot	Leaf blast	Root rot (Sclerotium
	(Bipolaris maydis & Exserohilum	(Rhizoctonia	(Gloeocercospora sorghi)	(Pyricularia grisea)	rolfsii, Fusarium etc.)
	turcicum)	solani)			
Rajpur	18-22	4-5	30-35	5-10	30-40
Nagri	15-25	7-10	25-30	10-15	25-30
Bindraban	25-30	5-7	NA	NA	NA
Malan	25-30	5-7	30-35	NA	NA
Nagrota	20.25	3-4	NA	NA	20-25
Drang	15-20	6-8	NA	NA	NA
Kandwari	15-20	2-3	15-25	10-15	NA
Chauntra	30-35	-	NA	NA	NA
Dhanotu	20-25	-	10-15	25-30	15-20
Chowki	10.15	-	NA	NA	NA
Bandla	10-15	1-2	15-20	5-10	25-30
Bhawarna	25-30	7-10	15-20	10-15	15-20
Thural	15.20	8-10	15-20	NA	NA

NS: Not surveyed

NA: Crop not available

Table Rahuri 1b: Survey of diseases of fodder crops in Maharashtra

Date	Location/	Crops Lower Moire Paire Cowner								
	Villages	J	owar	Maize		Bajra		Cowpea		H. Napier
		Shoot fly % dead hearts	Maydis leaf blight (score)	FAW S. frugiperda (score)	Leaf spot (score)	Shoot fly % dead hearts	Aphids / plant (score)	Defoliators/ m ²	YMV (score)	No .of Sucking insects
01/07/2020	Bherdapur	8.2	0.0	2.4	0.0	1.0	0.0	0.0	0.0	0.0
28/07/2020	Pimpalgaon Nip.	0.00	0.0	2.8	0.0	2.0	0.2	1.0	0.0	0.0
03/08/2020	Wambori	12.7	0.0	3.6	0.0	2.2	1.0	0.0	0.0	0.0
09/08/2020	Matapur	0.0	0.0	2.4	0.0	0.0	2.0	0.0	0.0	0.0
17/08/2020	Digras	11.4	0.0	4.0	0.0	3.2	2.6	2.0	0.0	0.0
25/08/2020	Sukewadi	10.0	0.0	2.0	0.0	2.0	1.2	1.0	0.0	0.0
27/08/2020	Sade	6.0	0.6	2.6	0.0	2.3	1.6	1.0	1.0	0.0
01/09/2020	Khadambe	0.0	1.0	3.8	0.0	2.0	1.0	2.0	1.0	0.0
05/09/2020	Rahuri Khurd	0.0	2.0	4.8	2.2	4.2	3.2	1.4	1.4	0.0
18/09/2020	Kolhar	0.0	2.4	2.4	2.0	0.0	5.4	0.0	1.8	0.0
25/09/2020	Dadh Brk	0.0	1.0	5.0	1.4	0.0	2.8	0.0	1.0	0.0
02/10/2020	Jorve	0.0	1.0	2.0	0.6	0.0	1.0	0.0	0.0	0.0
17/10/2020	Rajapur	0.0	1.0	1.2	2.8	0.0	0.0	0.0	0.0	0.0
14/10/2020	Kokangaon	0.0	2.1	2.2	3.0	0.0	0.0	0.0	0.0	0.0
03/10/2020	Kolhar	0.0	2.8	2.0	2.0	0.0	0.0	0.0	0.0	0.0

Table:-Bhubaneswar PPT-1 (b): Survey of disease and insect pest in kharif forage crops in Odisha

	D ()			Maize	•	Pearl millet	Cow	pea	Ricel	bean
District	Date of survey	Name of location	Maydis leaf blight (% severity)	Fall armyworm (% infestation)	BLSB (% incidence)	Blast (% severity)	Root rot (%)	YMV (%)	Root rot (%)	YMV (%)
Khordha	20.08.21	Bajapur	16.0	32.4	16.4	18.2	4.2	4.2	4.5	6.4
		Haripur	12.5	14.8	0	16.5	4.5	6.5	3.6	4.4
		Kuradhamal	0	22.6	20.5	20.0	8.7	4.8	4.6	10.2
		Kaipadar	8.5	18.2	12.5	23.4	12.0	8.5	6.2	5.2
		palatotapada	0	15.4	0	12.2	6.1	4.6	4.2	8.0
Puri	27.8.21	Alagaam	5.5	10.5	18.4	15.7	7.5	10.2	6.0	8.2
		Kadua	14.5	36.0	11.6	12.5	3.4	4.4	8.2	5.5
		Sukal	0	18.6	0	16.4	10.4	15.2	0	0
		Dugal	0	24.5	0	18.6	12.3	8.2	0	0
		Bala pur	10.0	22.8	13.5	20.8	4.0	6.4	4.2	10.2
Cuttack	5.9.21	Adashpur	26.0	35.4	23.8	16.3	18.2	8.2	8.0	10.2
		Kasarada	20.8	15.6	15.4	12.5	12.5	22.0	12.2	14.4
		Bilasuni	14.5	22.4	0	10.0	5.4	10.4	16.8	6.8
		Pokharigaon	12.6	36.2	18.4	8.4	6.6	18.6	6.5	8.1
		Alana	22.2	32.4	12.2	18.5	12.0	4.3	10.2	12.2

Table Coimbatore PPT-1b: Survey of insect pests and diseases on Kharif forage crops in Tamil Nadu

SMW							L	ocation, C	rop and Pe	est					
	М	М	М	M	М	М	М	CM	CM	CM	CM	CM	Ayyansalai	Vedapatti	Madathukulam
	CN Co 5	SN	Guinea grass	Veli masal	SN	Guinea grass	CN Co 5	SN	SN	CN Co 5	SN	CN Co 5	Fodder sorghum	SN	CN Co 5
	Spittle	Spittle	-	-	Spittle	-	Spittle	Spittle	Spittle	Spittle	Spittle	Spittle	-	Spittle	Spittle bug
	bug	bug			bug		bug	bug	bug	bug	bug	bug		bug	
28	0.00	0.00	-	-	0.00	-	0.00	-	-	0.00	-	-	-	0.00	-
29	0.00	0.00	-	-	0.00	-	0.00	-	-	0.00	-	-	-	0.00	-
30	0.00	0.00	-	-	0.00	-	0.00	-	-	0.00	-	-	-	0.00	-
31	0.00	0.00	-	-	0.00	-	0.00	-	-	0.00	-	-	-	0.00	-
32	2.33	0.00	-	-	0.00	-	0.00	-	-	0.00	-	-	-	0.00	-
33	0.00	0.00	-	-	2.66	-	0.00	-	-	0.00	-	-	-	0.00	-
34	0.00	0.00	-	-	0.00	-	0.00	-	-	3.00	-	-	-	0.00	-
35	0.00	0.00	-	-	0.00	-	0.00	-	-	0.00	-	-	-	3.33	-
36	0.00	0.00	-	-	0.00	-	0.00	-	-	0.00	-	-	-	0.00	-
37	0.00	0.00	-	-	0.00	-	0.00	-	-	0.00	-	-	-	0.00	-
38	0.00	0.00	-	-	0.00	-	0.00	-	-	0.00	-	-	-	0.00	-
39	0.00	0.00	-	-	0.00	-	0.00	-	-	0.00	-	-	-	0.00	-
40	0.00	0.00	-	-	0.00	-	0.00	-	-	0.00	-	-	-	0.00	-
41	0.00	0.00	-	-	0.00	-	0.00	-	-	0.00	-	-	-	0.00	-
42	0.00	0.00	-	-	0.00	-	0.00	-	-	0.00	-	-	-	0.00	-
43	0.00	0.00	-	-	0.00	-	0.00	-	-	0.00	-	-	-	0.00	-

M – Mathampalayam

CM –**C**hinnamathampalayam

SN: Super Napier

Spittle bug: No. of nymphs and adults/plant

PPT-2: Evaluation of Kharif forage crops breeding materials for prevalent diseases and insect pests under natural conditions

Objective: Screening of various contributed entries along with national and zonal checks for their reaction to diseases and insect pests under natural conditions using standard disease/insect-pest rating scales.

Locations: Ludhiana, Rahuri, Palampur, Coimbatore, Bhubaneswar, Jhansi

Crops: Pearl millet, Maize, Cowpea, Rice bean, and perennial grasses

Results:

IVTPM - Initial varietal trial in Pearl Millet: (Table: Disease -pest resistance in IVT Pearl Millet trial)

At Rahuri, all the entries were resistant to moderately resistant against blast disease.

At Ludhiana, All entries were found susceptible to leaf blast. Downy mildew incidence was negligible in all the entries. All the entries showed low incidence of grasshopper per ten plants and its range was recorded to be 0.66- 1.33, the differences were non-significant. Very low level of pyrilla population was observed, with non-significant differences.

At Bhubaneswar, all the entries were resistant to moderately resistant against blast and defoliators except AFB-54 and RBB-1 which showed susceptible reaction to blast and moderately susceptible to leaf defoliator.

At Jhansi, all the entries were resistant to moderately resistant against blast.

AVTPM –1 (Advance varietal trial-1 in Pearl Millet): (Table: Disease –pest resistance in AVT-1 Pearl Millet trial)

At Rahuri, all the entries were resistant to moderately resistant against blast disease.

At Ludhiana, All entries showed susceptible disease reaction to leaf blast. No incidence of downy mildew was observed. All the entries showed very low incidence of grasshopper per ten plants and its range was 1.00- 1.66, the differences were non-significant. Incidence of cotton grey weevil ranged from 0.66 to 1.00 per 10 plants, the differences were non-significant.

At Bhubaneswar, all the entries were resistant to moderately resistant against blast and defoliators.

At Jhansi, all the entries were resistant to moderately resistant against leaf blast.

AVTPM –2 (Advance varietal trial-2 in Pearl Millet): (Table: Disease –pest resistance in AVT-2 Pearl Millet trial)

At Rahuri, all the entries were resistant to moderately resistant against blast disease.

At Ludhiana, All entries showed susceptible disease reaction to leaf blast. No incidence of downy mildew was observed. All the entries showed very low incidence of grasshopper per ten plants and its range was 1.00- 1.66, the differences were non-significant. Incidence of cotton grey weevil ranged from 0.66 to 1.00 per 10 plants, the differences were non-significant.

At Bhubaneswar, all the entries were resistant to moderately resistant against blast and defoliators.

At Jhansi, all the entries were resistant to moderately resistant against blast.

Table: Disease -pest tolerance in IVT Pearl Millet trial

Entries			Ludhiana			Bhi	ubaneswar		•	Jhansi	R	ahuri
	Leaf blast score	Disease reaction	Grasshopper (incidence/10 plants)	Pyrilla (incidenc e/plant)	Leaf blast score	Disease Reaction	Leaf defoliators (No./10 plants)	Reaction	Leaf blast score	Disease Reaction	Leaf blast score	Reaction
JPM-18-71	6	S	1.00	1.00	3	R	2.8	R	2.3	R	0.00	R
AFB-3 (ZC-NWZ)	6	S	0.66	1.33								
BAIF Bajra 1 (ZC-CZ)									3.0	R	0.00	R
APFB-9-1 (ZC-NEZ)					4	MR	3.6	MR				
FBL-7	6	S	1.33	1.33	4	MR	3.4	MR	2.3	R	0.00	R
FBL -6	5	S	1.00	1.00	2	R	2.1	R	2.0	R	0.00	R
AFB-45	6	S	1.00	1.00	5	MR	3.8	MR	1.0	HR	4.06	MR
NDFB-942	6	S	1.33	1.33	5	MR	3.8	MR	2.3	R	4.41	MR
AFB-54	6	S	1.00	1.00	6	S	4.2	MS	3.0	R	2.77	R
Giant Bajra (NC)	6	S	1.00	0.66	2	R	2.2	R	3.7	MR	0.00	R
RBB-1 (NC)	6	S	0.66	1.00	6	S	4.8	MS	3.3	MR	2.37	R
ADV175020	6	S	1.00	1.00	2	R	2.4	R	2.0	R	0.00	R
Hybrid - FSB2021 - 1	6	S	0.66	0.66	3	R	2.6	R	2.7	R	0.00	R

Table: Disease -pest tolerance in AVT-1 Pearl Millet trial

Entries			Ludhiana		Bhu	ıbaneswar		Jhansi		Rahuri		
	Leaf blast score	Disease reaction	Grasshoppers (incidence/10 plants)	Pyrilla (incidenc e/plant)	Leaf blast score	Disease Reaction	Leaf defoliators (No./10 plants)	Reaction	Leaf blast score	Disease Reaction	Leaf blast score	Reaction
FBL 4	6	S	1.66	1.00	3	R	2.8	R	3.0	R	4.15	MR
RBB-1 (NC)	7	S	1.00	0.66	4	MR	2.8	R	2.7	R	4.26	MR
AFB-3 (ZC-NWZ)	6	S	1.66	1.00								
BAIF Bajra 1 (ZC-CZ)									2.3	R	3.89	MR
APFB-9-1 (ZC-NEZ)					5	MR	3.8	MR				

TSFB-1610	6	S	1.00	0.66	2	R	2.2	R	2.3	R	0.00	R
16ADV0111	6	S	1.33	1.00	5	MR	3.6	MR	2.7	R	4.17	MR
JPM 18-37	6	S	1.33	0.66	3	R	2.8	R	3.3	MR	3.89	MR
Giant Bajra (NC)	7	S	1.00	1.00	2	R	2.4	R	3.3	MR	1.99	R
PHBF-5	6	S	1.66	0.66	2	R	2.6	R	3.3	MR	2.09	R

Table: Disease -pest tolerance in AVT-2 Pearl Millet trial

Entries	•		Ludhiana			Bhu	baneswar		Jhansi		Rahuri	
	Leaf blast score	Disease reaction	Grasshoppers (incidence/10 plants)	Pyrilla (incidence/plant)	Leaf blast score	Disease Reaction	Leaf defoliators (No./10 plants)	Reaction	Leaf blast score	Disease Reaction	Leaf blast score	Reaction
AFB-3 (ZC-NWZ)	6	S	1.33	0.66								
BAIF Bajra 1 (ZC-CZ)									2.8	R	4.07	MR
APFB-9-1 (ZC- NEZ)					3	R	2.8	R				
JPM-18-7	6	S	1.00	0.66	4	MR	3.6	MR	3.0	R	3.97	MR
BAIF Bajra-7	6	S	1.33	0.66	2	R	2.2	R	2.8	R	4.56	MR
RBB-1 (NC)	6	S	1.33	0.66	4	MR	2.8	R	2.0	R	4.44	R
16ADV0055	6	S	1.66	1.00	2	R	2.4	R	2.8	R	3.87	MR
Dev-1	6	S	1.66	1.00	2	R	2.4	R	3.3	MR	4.13	MR
Giant Bajra (NC)	6	S	1.33	0.66	3	R	2.6	R	2.5	R	1.67	R

IVTC – Initial varietal trial in cowpea (Table: Disease –pest tolerance in IVT in Cowpea trial)

At Rahuri, entries HFC 17-7, MFC-18-10 and PFC 40 were resistant to aphids, whereas PFC 36, UPC-5286 and TSFC-20-06 were moderately resistant. The entries TNFC 1910, MFC-18-8 and PFC 40 were found resistant to yellow mosaic virus.

At Palampur, entries PFC 40 and TSFC-20-06 were found moderately resistant to root rot and wilt complex. All other entries were found susceptible.

At Ludhiana, all the entries were found resistant to cowpea mosaic virus except HFC 17-7, PFC 40 and TSFC-20-06 which were moderately susceptible. The attack of defoliators was recorded to be in range of 1.66-2.33 larvae per 10 plants, the differences were non-significant.

At Bhubaneswar, all the entries were resistant to moderate resistance against root rot. All entries were resistant to moderately resistant against yellow mosaic virus and aphids except TNFC 1910, TSFC-20-06 which were moderately susceptible.

At Coimbatore, all the entries were resistant to moderately resistant to aphids and yellow mosaic virus infestation.

AVTC-1: First Advanced Varietal Trial in Cowpea (Table: Disease -pest tolerance in AVT-1 in Cowpea trial)

At Bhubaneswar, all the entries were found resistant to moderately resistant to aphid, root rot and mosaic except MFC-16-8 which was found moderately susceptible to yellow mosaic virus.

At Coimbatore, all the entries were resistant to aphids and yellow mosaic virus infestation.

Table: Disease -pest tolerance in IVT Cowpea trial

Entries	•	Ludhiana	•	Pala	ımpur	Bhubaneswar							
	% mosaic incidence	Disease reaction	Defoliators/ 10 plants		rilt/collar rot nplex								
				Incidence (%)	Disease Reaction	Root rot %	Disease reaction	Mosaic incidence (%)	Disease reaction	Cowpea aphid (No.)	Reaction		
Bundel Lobia-2 (ZC-NWZ)	0.0	HR	2.33					· ,					
UPC-622 (ZC- HZ)				14	MR								
TNFC 0926 (ZC- NEZ)						3.5	R	4.8	R	8.2	MR		
PFC 36	2.0	R	2.66	60	S	3.6	R	3.2	R	10.5	MR		
TNFC 1910	5.5	R	1.66	25	MS	3.8	MR	20.4	MS	22.2	MS		
MFC-18-8	6.5	R	2.00	30	MS	2.2	R	0.0	HR	2.4	R		
UPC 21-1	15.0	MR	1.66	60	S	2.0	R	0.0	HR	2.0	R		
HFC 17-7	27.3	MS	2.00	25	MS	2.2	R	0.0	HR	2.4	R		
MFC-18-10	11.0	MR	2.33	30	MS	2.4	R	0.0	HR	2.8	R		
Bundel Lobia-1 (NC)	10.5	MR	1.66	20	MR	2.4	R	0.0	HR	3.8	R		
UPC-5286 (NC)	0.0	HR	2.00	40	MS	3.6	MR	15.4	MR	12.6	MR		
PFC 40	27.0	MS	2.33	20	MR	3.8	MR	12.2	MR	14.8	MR		
TSFC-20-06	28.5	MS	2.00	12	MR	4.0	MR	22.2	MS	24.6	MS		

Table: Disease -pest tolerance in IVT Cowpea trial cont...

Entries			Rahuri		Coimb	atore		
	Av. No. of aphids/plant	Reaction	YMV incidence	Disease reaction	Av. No. of aphids/plant	Reaction	YMV incidence	Disease reaction
UPC-9202 (ZC-CZ)	74.00	S	59.40	HS				
MFC-09-1 (ZC-SZ)					1.30	R	2.00	MR
PFC 36	29.90	MR	49.40	S	1.50	R	2.00	MR
TNFC 1910	71.70	S	0.00	HR	0.00	HR	1.0	R
MFC-18-8	36.40	MS	0.00	HR	0.00	HR	1.0	R
UPC 21-1	38.40	MS	6.00	R	0.00	HR	1.0	R
HFC 17-7	5.50	R	45.80	S	1.30	R	1.5	R
MFC-18-10	6.70	R	28.60	MS	0.00	HR	1.0	R
Bundel Lobia-1 (NC)	49.50	MS	25.40	MS	0.00	HR	1.0	R
UPC-5286 (NC)	16.70	MR	22.20	MS	1.60	R	1.5	R
PFC 40	8.60	R	0.00	HR	1.50	R	1.0	R
TSFC-20-06	19.20	MR	42.20	S	1.50	R	1.0	R

Table: Disease -pest tolerance in AVT-1 Cowpea trial

			Bhubanes	war				Coiml	oatore			
	Doot	Diagona	Mosaic	Diagona	Cowpea a	hid						
Entries	Root rot (%)	Disease reaction	(% infection)	Disease reaction	No./top leaf with 10 cm petiole	Reaction	Av. No. of aphids/plant	Reaction	YMV incidence	Disease reaction		
HFC17-9	3.2	R	2.4	R	4.2	R	0.60	R	1.0	R		
UPC-5286 (NC)	2.6	R	4.2	R	4.8	R	0.30	R	1.0	R		
MFC-8-14 (ZC- SZ)							1.00	R	1.0	R		
UPC 628 (ZC-NEZ)	2.4	R	-	HR	2.4	R						
Bundel Lobia-1 (NC)	4.5	R	14.5	MR	6.8	MR	1.70	R	1.0	R		
MFC-16-8	12.2	MR	24.4	MS	9.2	MR	1.20	R	1.0	R		

IVTM – Initial varietal trial in Maize (Table: Disease –pest tolerance in IVT Maize trial)

At Rahuri, All the entries were found resistant to moderately resistant to fall armyworm except IIMFC 1, ADC-2 and PJHM-1 which were moderately susceptible. All the entries were resistant to moderately resistant to *Maydis* leaf blight.

At Palampur, all the entries were resistant to moderately resistant against *Turcicum* leaf blight.

At Ludhiana, all entries showed resistant to moderately resistant disease reaction to *Maydis* leaf blight. All the entries exhibited very low incidence of *Chilo partellus* and fall armyworm without any significant variation amongst different test entries.

At Bhubaneswar, all the expressed resistant to moderately resistant reaction to leaf blight except Hybrid - FSM2021-1, IIMFC 2, CMH-12-686 showed moderate susceptibility to leaf blight. Hybrid - FSM2021-1, CMH-12-686 IVTM-6 and 12 expressed moderate susceptibility to BLSB in maize. Rest of the entries were resistant to moderately resistant to BLSB.

At Jhansi, the entries ADFM-3, IIMFC 1, IIMFC 2, ADFM-2, MFM-18-27, CMH-12-686, HPFM-11, MFM-18-2 were found resistant to *Spodoptera frugiperda*. Rest were moderately susceptible.

At Coimbatore, all the entries were found resistant to *Spodoptera frugiperda*.

AVTM –1 (Advance varietal trial-1 in Maize) (Table: Disease –pest tolerance in AVT Maize trial)

At Rahuri, All the entries were found resistant to moderately resistant to fall armyworm. All the entries were resistant to moderately resistant to *Maydis* leaf blight.

At Ludhiana, all entries showed moderately resistant disease reaction to leaf blight of maize. All the entries exhibited very low incidence of *Chilo partellus* and fall armyworm without any significant variation amongst different test entries.

At Palampur, all the entries were resistant to moderately resistant against *Turcicum* leaf blight.

At Bhubaneswar, all the entries were resistant to moderately resistant against *Turcicum* leaf blight and banded leaf and sheath blight.

At Jhansi, the entries PMC-13, PMC-11, COHM-8 were found resistant and rest were moderately susceptible to *Spodoptera frugiperda*.

At Coimbatore, all the entries were found resistant to *Spodoptera frugiperda*.

AVTM -2 (Advance varietal trial-2 in Maize) (Table: Disease -pest tolerance in AVT Maize trial)

At Rahuri, All the entries were found resistant to moderately resistant to fall armyworm and *Maydis* leaf blight.

At Ludhiana, all entries showed moderately resistant disease reaction to leaf blight of maize. All the entries exhibited very low incidence of *Chilo partellus* and fall armyworm without any significant variation amongst different test entries.

At Jhansi, all the tested entries were found resistant to Spodoptera frugiperda.

Table: Disease -pest tolerance in IVT Maize trial

Entries		Rahu	ıri		Pa	alampur	Jhansi	
	Fall army worm Leaf Damage (%)	Reaction	Leaf blight severity (%)	Leaf blight Reaction	Leaf blight severity (%)	Disease Reaction	Fall army worm Leaf Damage (%)	Reaction
ADFM-3	24.70	R	22.44	MR	15	R	30.0	R
AH-1645	36.56	MR	12.22	R	12	R	46.7	MS
IIMFC 1	57.28	MS	24.33	MR	25	MR	36.7	R
ADC-2	55.08	MS	12.00	R	12	R	60.0	MS
African Tall (NC)	54.58	MS	21.49	MR	14	R	33.3	R
Hybrid - FSM2021-1	34.68	MR	11.82	R	12	R	53.3	MS
PJHM-1	61.84	MS	11.33	R	10	R	43.3	MS
J-1006 (NC)	48.08	MR	12.33	R	10	R	46.7	MS
IIMFC 2	36.32	MR	11.56	R	15	R	36.7	R
ADFM-2	30.68	R	11.62	R	25	MR	30.0	R
MFM-18-27	34.60	R	11.71	R	11	R	33.8	R
CMH-12-686	32.61	R	11.78	R	18	R	26.7	R
HPFM-11	37.43	MR	11.56	R	20	MR	36.7	R
MFM-18-2	33.39	R	11.44	R	18	R	30.0	R
DFH -4	34.70	R	11.22	R	15	R	50.0	MS
KDFM -7	34.42	R	11.56	R	12	R	46.5	MS
COHM-8 (NC)	32.98	R	21.33	MR	14	R	43.1	MS

Table: Disease -pest tolerance in IVT Maize trial cont..

Entries			udhiana			Bhubai	neswar		Coimb	atore
	Leaf blight severity (%)	Disease reaction	Chilo partellus % infestation	Fall armyworm (% plant infestation)	Leaf blight severity (%)	Disease Reaction	Banded Leaf and Sheath Blight Severity (%)	Disease Reaction	Fall army worm Leaf Damage (%)	Reaction
ADFM-3	15.5	R	1.00	1.00	33	MR	17	R	40.00	R
AH-1645	10.8	R	1.50	1.00	27	MR	15	R	20.00	R
IIMFC 1	35.5	MR	1.00	2.00	12	R	11	R	20.00	R
ADC-2	27.5	MR	1.00	0.33	36	MR	24	MR	20.00	R
African Tall (NC)	35.8	MR	1.50	2.00	11	R	11	R	20.00	R
Hybrid - FSM2021-1	26.0	MR	1.50	2.00	58	MS	44	MS	20.00	R
PJHM-1	12.5	R	1.50	2.00	14	R	13	R	20.00	R
J-1006 (NC)	24.5	MR	1.00	0.33	12	R	12	R	40.00	R
IIMFC 2	37.2	MR	0.75	1.66	51	MS	25	MR	40.00	R
ADFM-2	25.7	MR	1.50	1.66	35	MR	18	R	40.00	R
MFM-18-27	28.3	MR	2.00	2.66	16	R	13	R	20.00	R
CMH-12-686	11.9	R	1.50	1.66	55	MS	41	MS	20.00	R
HPFM-11	31.5	MR	1.50	3.00	38	MR	23	MR	30.00	R
MFM-18-2	25.0	MR	1.50	2.00	19	R	14	R	30.00	R
DFH -4	13.3	R	1.00	0.33	30	MR	15	R	5.00	R
KDFM -7	25.7	MR	1.00	0.33	22	MR	14	R	20.00	R
COHM-8 (NC)	15.7	R	1.00	2.00	26	MR	14	R	40.00	R

Table: Disease -pest tolerance in AVT-1 Maize trial

Entries		Rah	nuri			L	.udhiana		Pala	mpur
	Fall army worm Leaf Damage (%)	Reaction	Maydis leaf blight severity (%)	Reaction	Maydis leaf blight severity (%)	Reaction	Chilo partellus % infestation	Fall armyworm (% plant infestation)	Turcicum leaf blight severity (%)	Reaction
African Tall (NC)	26.60	R	18.71	R	25.0	MR	1.50	2.00	25	MR
KDFM-6	31.60	MR	16.13	R	30.0	MR	1.00	1.00	12	R
J-1006 (NC)	33.40	MR	21.00	MR	25.8	MR	1.00	2.00	8	R
PFM-13	30.20	R	22.67	MR	38.7	MR	2.00	4.00	14	R
HQPM 28	26.20	R	15.58	R	28.0	MR	1.00	2.50	12	R
DFH-2	22.70	R	12.44	R	24.5	MR	1.00	1.00	9	R
PMC-13	40.10	MR	24.00	MR	37.3	MR	0.75	1.00	14	R
PMC-11	26.70	R	20.11	MR	39.7	MR	2.50	2.00	21	MR
COHM-8 (NC)	25.60	R	12.56	R	28.3	MR	1.50	2.50	10	R

Table: Disease -pest tolerance in AVT-1 Maize trial cont...

Entries		Е	Bhubaneswar		Coimbato	ore	Jhansi	
	Turcicum leaf blight severity (%)	Disease Reaction	Banded Leaf and Sheath Blight Severity (%)	Disease Reaction	Fall army worm Leaf Damage (%)	Reaction	Fall army worm Leaf Damage (%)	Reaction
African Tall (NC)	26	MR	20	R	40.00	R	46.5	MS
KDFM-6	44	MR	30	R	10.00	R	43.8	MS
J-1006 (NC)	11	R	11	R	40.00	R	42.5	MS
PFM-13	12	R	13	R	40.00	R	50.0	MS
HQPM 28	30	MR	22	R	10.00	R	46.7	MS
DFH-2	25	MR	15	R	20.00	R	43.3	MS
PMC-13	35	MR	24	R	20.00	R	40.0	R
PMC-11	23	MR	14	R	40.00	R	33.3	R
COHM-8 (NC)	42	MR	28	R	40.00	R	40.0	R

Table: Disease -pest tolerance in Combined AVT-2 Maize trial

Entry		Rah	uri				Ludhiana		Jhan	si
	Fall army worm Leaf Damage (%)	Reaction	Maydis leaf blight severity (%)	Reaction	Maydis leaf blight severity (%)	Reaction	Chilo partellus % infestation	Fall armyworm (% plant infestation)	Fall army worm Leaf Damage (%)	Reaction
J-1006 (NC)	31.90	MR	25.60	R	31.5	MR	1.50	2.00	48.0	MS
African Tall (NC)	29.10	R	15.33	R	35.3	MR	2.00	3.00	32.0	R
COHM-8 (NC)	28.20	R	13.09	R	21.5	MR	1.25	2.00	40.0	R
PFM-12	27.50	R	23.83	R	25.5	MR	1.50	4.00	30.	R

IVTRB – Initial varietal trial in Rice bean (Table: Disease –pest tolerance in IVT Rice bean trial)

At Bhubaneswar, all the entries showed resistance to moderate resistance reaction against root rot, yellow mosaic and defoliators except JOR-21-2 which was moderately susceptible to yellow mosaic and root rot.

Table: Disease -pest tolerance in IVT Rice bean trial

			Bhubaneswa	ar		
Entries	Root rot %	Disease reaction	Mosaic severity %	Disease reaction	Defoliators damage (%)	Reaction
Bidhan-2 (NC)	11.6	MR	12.8	MR	22	MR
BRB1-L13P5	4.8	R	8.8	R	10	R
JOR-21-1	2.8	R	4.2	R	6	R
JRBJ-12-9	4.2	R	6.4	R	6	R
JOR-21-2	12.8	MR	22.3	MS	26	MR
Bidhan-3 (NC)	5.4	R	5.6	R	8	R

AVT-2-DG: AVT-2-DG: Second Advanced Varietal Trial in Dinanath Grass

At Bhubaneswar, all the entries were resistant to moderately resistant to leaf spot and defoliators except BAU-DN-103-18-2 which was found moderately susceptible to both leaf spot and defoliators.

Entries	Leaf spot severity	Reaction	Leaf defol	iators
	-		No./ 10 plants	Reaction
JHD-19-4	42.2	MR	3.8	MR
BAU-DN-103-18-2	60.5	MS	4.0	MS
BAU-DN-109-8	12.4	R	2.2	R
Bundel Dinanath-2 (NC)	14.0	R	2.0	R
BAU-DN-110-18-2	44.6	MR	3.8	MR

VT Bajra X Napier Hybrid - 2019 (New): At Rahuri and Ludhiana, No disease/ insect-pest was observed.

VTCC- Cenchrus ciliaris (Table: Disease -pest tolerance in VTCC-2019 trial)

At Ludhiana, no disease and insect-pests were observed.

At Rahuri, entries CAZRI 75, IGFRI 3108, RCCB-05 were resistant while entries RCCB-06 and IG-96-414 were moderately resistant to leaf blight. Sucking pests and defoliators were not observed throughout crop period.

Table: Disease -pest tolerance in VTCC-2019 trial

Entries	Rahuri	
	Mean leaf blight severity	Reaction
RCCB-06	14.03	MR
RCC-2016-8	0	NS
IG-67-1263	0	NS
CAZRI-327	0	NS
IGFRI-67-365 (NC)	0	NS
CAZRI 75 (NC)	4.97	R
IGFRI 3108 (NC)	4.87	R
RCCB-05	5.38	R
IG-96-414	14.31	MR

^{*}NS= entry not survived

VTCS- Cenchrus setigerus (Table: Disease -pest tolerance in VTCS-2019 trial)

At Rahuri, IG-96-706 (NC) was resistant to leaf blight. Sucking pests and defoliators were not observed throughout crop period. Rest of the entries does not survived.

Table: Disease -pest tolerance in VTCS-2019 trial

Entries	Rahuri							
	Mean leaf blight severity	Reaction						
IG-97-433	0.00	NS						
RCSB-09	0.00	NS						
IG-96-706 (NC)	7.61	R						
IG-97-447	0.00	NS						
TNCS-265 (NC)	0.00	NS						
RCSB-08	0.00	NS						
CAZRI-76 (NC)	0.00	NS						

^{*}NS= entry not survived

PPT-25: Validation of best treatments of trial entitled "Non chemical management of *Helminthosporium* leaf blight in fodder maize"

Location: Ludhiana **Design:** Paired plot design **Replication:** 7 **Plot size:** 10x10 m²

Treatments

T1: Two foliar spray of *Murraya koenigii* @ 3.0% at 10 days interval

T2: Two foliar spray of chitosan @ 0.05% at 10 days interval

T3: Control

Note: First spray should be given at the onset of disease symptoms.

Observations:

Helminthosporium leaf blight severity.

Green Fodder Yield (q/ha).

Economics.

Results:

Plant extracts and bioagents were tested for the management of leaf blight of fodder maize (Table PPT 25). Leaf blight severity was observed very less in plots treated with two foliar sprays of chitosan @ 0.05% at 10 days interval followed by two foliar sprays of *Murraya koenigii* @ 3.0% at 10 days interval with 19.21 and 22.66 percent respectively with 55.64 and 47.69 percent disease control as compared to check (43.31 % severity). Green fodder yield was maximum in two foliar sprays of chitosan @ 0.05% at 10 days (602.86 q/ha) as compared to check (472.86 q/ha). Higher Benefit cost ratio of 3.69 was obtained in two foliar sprays of chitosan @ 0.05% at 10 days interval than other treatments.

Table PPT-25: Management of Helminthosporium leaf blight in fodder maize

	Treatments	Leaf blight severity (%)	Disease control (%)	Green Fodder Yield (q/ha)	Increase in Yield (%)	B:C ratio
T ₁	Two foliar sprays of Murraya koenigii @ 3.0% at 10 days interval	22.66	47.69	566.43	19.79	3.41
T ₂	Two foliar sprays of chitosan @ 0.05% at 10 days interval	19.21	55.64	602.86	27.49	3.69
T ₃	Control	43.31		472.86		2.69
CD	(P=0.05)	2.208		7.655		
SE±	E(m)	0.709		2.457		
CV		6.603		1.188		

PPT-26: Management of leaf blast in forage pearl millet

Locations: Ludhiana, Jhansi, Bhubaneswar and Palampur

Design: RBD **Replication:** 3 **Plot size:** 3x2 m² **Variety:** Giant Bajra

Treatments

T1: Seed treatment with carbendazim @ 2.0 g/kg seed

T2: Seed treatment with tebuconazole + trifloxystrobin @ 1 g/kg seed

T3: Seed treatment with chitosan @ 0.05%

T4: Seed treatment with neem seed extract @ 5%

T5: Seed treatment with tricyclazole @ 0.6 g/kg seed

T6: T1+ foliar spray of carbendazim @ 0.5 g/L

T7: T2+ foliar spray of tebuconazole + trifloxystrobin @ 0.4g/L

T8: T3+ foliar spray of chitosan @ 0.05%

T9: T4+ foliar spray of neem seed extract @ 5%

T10: T5+ foliar spray of tricyclazole @ 0.3 g/L

T11: Control

Observations:

- Leaf blast severity in each treatment at 7 days interval starting from disease onset.
- > AUDPC (A-value) and rate of infection (r) in different treatments
- Green Fodder yield (q/ha) in different treatments.

Note: In treatments T6 to T10, one foliar spray was given just at disease initiation and second spray at 15 days after first one.

Results:

At Ludhiana, leaf blast severity was observed very less in T_7 [Seed treatment with tebuconazole + trifloxystrobin @ 1 g/kg seed + foliar spray of tebuconazole + trifloxystrobin @ 0.4g/L] followed by T_{10} [Seed treatment with tricyclazole @ 0.6 g/kg seed + foliar spray of tricyclazole @ 0.3 g/L] with 29.0 and 30.3% respectively as compared to check (52.0%). Likewise, AUDPC values of both the treatments were found lowest that is 760.7 and 798.0 respectively. Green fodder yield was also maximum in both the treatments that is 881.67 and 801.67 g/ha respectively as compared to check 560.0 g/ha.

At Palampur, T10 (seed treatment with tricyclazole @ 0.6 g/kg seed and two sprays of same fungicide @ 0.3g/l) was found most effective (terminal disease severity of 10.0%). The values of r/day and AUDPC were observed minimum i.e. 0.04 and 203.00 respectively in T10. Green fodder yield was maximum in T10 is 358.33 q/ha. In control, the disease severity was observed 48.7% with maximum r (0.12) per day and A-value (734.33) and minimum GFY (316.67 q/ha).

At Bhubaneswar, among all the treatments, T10 (seed treatment with tricyclazole @ 0.6 g/kg seed and two sprays of tricyclazole @ 0.3 g/l) and T7 (seed treatment with tebuconazole + trifloxystrobin @ 1 g/kg seed followed by two sprays of tebuconazole + trifloxystrobin @ 0.4g/l) with disease severity of 13.4 % and 15.8% were at par with each other. The A-value and r-value were observed minimum i.e. 181.25 and 0.043 respectively, in T10. Green fodder yield was maximum in T10 i.e. 345.3 q/ha. In control the disease severity was observed 48.5% with maximum A-value (858.55) and minimum GFY (248.6 g/ha).

At Jhansi, leaf blast severity (28.9%) was observed very less in T7 (Seed treatment with tebuconazole + trifloxystrobin @ 1 g/kg seed + foliar spray of tebuconazole + trifloxystrobin @ 0.4 g/L) as compared to control (55.6%) and other treatments. The A-value was observed minimum in T7 (611.72). r-value was lowest in T7 (0.03). Green fodder yield was also maximum in T7 (794.44 q/ha) as compared to check (627.78 q/ha).

Table PPT-26: Management of leaf blast in forage pearl millet

Treatments		Ludhi	ana			Palan	npur			Bhubar	neswar			Jha	nsi	
	Terminal mean leaf blast severity (%)	A- value	r- value	GFY (q/ha)	Terminal mean blast severity (%)	A- value	r- value	GFY (q/ha)	Terminal mean blast severity (%)	A- value	r-value	GFY (q/ha)	Terminal mean leaf blast severity (%)	A-value	r-value	GFY (q/ha)
T1	40.0°	989.3b	0.046a	571.67 ^h	33.7e	484.17 ^d	0.11c	329.33°	30.8c	527.1e	0.054 ^{abc}	296.9 ^d	41.5b	770.0 ^{cd}	0.06a	705.56 ^{bc}
T2	37.3 ^{cd}	875.0 ^{cd}	0.052a	683.33e	33.0e	466.67 ^d	0.12c	329.67°	31.3°	595.7 ^g	0.049 ^{abc}	287.7°	43.0 b	832.22b	0.06ab	722.22 ^{bc}
Т3	37.3 ^{cd}	871.5 ^{cd}	0.064a	630.00 ^f	38.3 ^f	579.83 ^f	0.10°	324.00°	29.6°	586.9 ^g	0.046ab	281.6b	40.7 b	808.89 ^{cd}	0.05 ^{abc}	700.00bc
T4	44.0b	987.0b	0.047a	601.67 ^g	41.3 ^f	647.50 ^g	0.10°	323.33c	36.6d	652.05 ^h	0.058bc	305.9e	38.5 b	749.31 ^{cd}	0.05 ^{abc}	677.78 ^{cd}
Т5	39.7°	918.2°	0.052a	590.00g	34.0e	520.33e	0.09bc	330.00°	34.4°	521.50e	0.056bc	313.2 ^f	42.2 b	824.44b	0.05 ^{abc}	716.67bc
Т6	43.7b	1017.3b	0.045a	588.33g	18.7°	339.50b	0.07b	349.00b	25.7b	394.80°	0.060≎	320.8 ^g	37.8 b	744.07 ^{cd}	0.03bc	738.89b
Т7	29.0e	760.7 ^f	0.061ª	881.67ª	13.7b	325.50b	0.05 ^{ab}	351.67 ^{ab}	15.8ª	276.50b	0.051 ^{abc}	338.4 ^h	28.9ª	611.72e	0.03°	794.44ª
Т8	35.0 ^d	837.7 ^{de}	0.048a	761.67°	15.3bc	397.83°	0.08bc	342.67b	26.7b	457.80d	0.054 ^{abc}	305.5e	37.8 b	746.72 ^{cd}	0.04 ^{abc}	716.67bc
Т9	35.7 ^d	897.2°	0.051ª	708.33 ^d	29.3 ^d	456.17 ^d	0.05 ^{ab}	325.33°	30.6°	545.65 ^f	0.057bc	298.9 ^d	37.0 b	736.40 ^{cd}	0.04 ^{abc}	727.78 ^{bc}
T10	30.3e	798.0ef	0.062a	801.67b	10.0ª	203.00a	0.04a	358.33ª	13.4ª	181.25ª	0.043a	345.3i	37.8 b	712.70 ^{de}	0.05 ^{abc}	744.44ab
T11	52.0ª	1192.3ª	0.055a	560.00h	48.7 ^g	744.33 ^h	0.12c	316.67d	48.5e	858.55 ⁱ	0.060≎	248.6ª	55.6°	995.56ª	0.06 ^{ab}	627.78d
CD @5%	2.953	47.058	0.009	13.485	2.38	38.27	0.02	7.36	2.45	16.04	0.01	5.60	7.77	102.46	0.02	54.73
CV%	4.466	2.975	10.104	1.172	4.84	4.75	12.24	1.28	3.33	1.85	12.4	1.08	11.39	7.75	30.96	4.49

AICRP on Forage Crops & Utilization

PPT-27: Management of invasive insect-pest fall army worm, *Spodoptera frugiperda* L. on Forage Maize

Locations: Rahuri, Ludhiana, Bhubaneswar and Jhansi

Design: RBD Replication: 3

Plot size: 4x3 m² Variety: African Tall

Treatments:

T1: Foliar spray of Emamectin benzoate 5 WG @ 0.5gL

T2: Foliar spray of Chlorpyriphos 20 EC @ 2 mL/L

T3: Foliar spray of Metarhizium anisopliae @ 5g /L

T4: Foliar spray of *Metarhizium anisopliae* @ 7.5g /L

T5: Foliar spray of Beauveria bassiana @ 5g /L

T6: Foliar spray of Beauveria bassiana @ 7.5g /L

T7: Foliar spray of Nomuraea releyi @ 5g /L

T8: Foliar spray of Nomuraea releyi @ 7.5g /L

T9: Foliar spray of Azadirachtin 10000 ppm @ 2mL /L

T10: Control

Observations:

Percent plant damage before spray and 3, 7, 10 days after spray

> Green Fodder yield (q/ha) in different treatments

Results:

At Rahuri, Emamectin benzoate was the most effective treatment in reducing the infestation of fall army in maize (4.54%) followed by *Nomuraea releyi* @ 7.5g /L (12.79%) compared to control (64.46%) after 10 days of treatment. Emamectin benzoate recorded the highest green fodder yield (468.1 q/ha) among all treatments.

At Jhansi, Emamectin benzoate was the most effective treatment in reducing the infestation of fall army in maize (33.1%) compared to control (86.5%) after 10 days of treatment. All the entomopathogens, *Beauveria bassiana*, *Nomuraea rileyi* and *Metarhizium anisopliae* were at par with each other in managing fall armyworm. Emamectin benzoate recorded the highest green fodder yield (91.67 q/ha) among all treatments.

At Ludhiana, emamectin benzoate was most effective in reducing insect infestation (10.00%). Emamectin benzoate recorded the highest green fodder yield (288.3 q/ ha).

At Bhubaneswar, emamectin benzoate was most effective in reducing insect infestation (3.5%). Emamectin benzoate recorded the highest green fodder yield (310.2 q/ ha).

Table PPT-27: Management of invasive insect-pest fall army worm, Spodoptera frugiperda L. on Forage Maize

Treatments			Rahuri					Jhansi		
		% plant infe	station		GFY (q//ha)		% plant in	festation		GFY (q//ha)
	Precount	3 DAS	7 DAS	10 DAS]	Precount	3 DAS	7 DAS	10 DAS	1
T1	52.52a	11.66ª	7.41a	4.54 a	468.1ª	49.3	39.8	37.8c	33.1°	91.67ª
T2	57.39 a	28.50b	22.99b	23.75 ^{df}	350.5b	48.8	45.8	48.1bc	51.3b	71.67b
T3	55.74 a	40.18 ⁹	30.60 ^f	22.59 de	321.1 ^f	46.7	49.6	53.6bc	56.9b	61.11 ^{bcd}
T4	55.68 a	38.18 ^{cd}	27.50 be	19.73 ^d	334.2 ^{de}	48.1	48.8	53.1bc	56.8b	59.72 ^{cd}
T5	58.37 a	44.28gh	37.68 fh	29.61h	294.2 ^g	46.6	50.0	55.6bc	58.0b	61.11 ^{bcd}
T6	58.40 a	41.41 ^{cf}	33.86 fg	25.58 dg	310.5 ^f	46.0	51.2	54.0bc	59.9b	66.67bc
T7	55.24 a	39.18 ^{ce}	24.35 bd	17.50bc	337.9d	47.7	52.2	57.6b	60.2b	63.89bc
T8	54.51 a	35.04c	21.64bc	12.79b	346.6bc	46.3	50.8	55.8bc	60.8b	66.11bc
T9	56.19ª	41.17 ^{cf}	38.12 ⁱ	41.60 ⁱ	284.7 ^h	47.4	51.9	54.2bc	57.6b	67.50bc
T10	56.70 a	59.89 ⁱ	61.72 ^j	64.46 ^j	268.4i	48.1	73.1	79.3a	86.5ª	52.78d
CD @5%	NS	4.15	4.33	4.03	6.48	NS	NS	18.06	16.31	10.71
CV%	2.74	7.14	7.84	8.04	7.14			19.16	16.35	9.43

Table PPT-27 cont..: Management of invasive insect-pest fall army worm, Spodoptera frugiperda L. on Forage Maize

Treatments			Ludhiana				Bh	ubaneswai	•	
		% plant inf	estation		GFY (q/ha)		% plant infe	station		GFY (q/ha)
	Precount	3 DAS	7 DAS	10 DAS		Precount	3 DAS	7 DAS	10 DAS	
T1	63.33	38.000a	28.00a	10.00a	288.3ª	20.4	10.2a	6.3	3.5a	310.2 ^h
T2	63.33	44.00 ^{ab}	35.33bc	18.00b	246.6d	20.8	12.6 ^b	9.5	6.8 ^{ab}	298.5 ^g
T3	62.66	49.33 ^{bcd}	39.33 ^{de}	25.33 ^{de}	238.0e	21.9	17.4°	14.6	10.7b	272.8e
T4	62.00	46.00bc	34.66b	20.66 ^{bcd}	256.3°	21.5	12.8 ^b	10.2	8.3 ^{ab}	256.2bc
T5	60.66	53.33 ^{de}	38.00 ^{bcde}	24.663 ^{cde}	220.6 ^f	22.5	10.2ª	8.7	7.6 ^{ab}	265.6de
T6	60.66	47.33 ^{cd}	36.00 ^{bcd}	20.00bc	264.6b	21.3	11.8 ^{ab}	10.3	8.4 ^{ab}	280.5 ^f
T7	60.00	52.00 ^{cd}	38.66 ^{cde}	24.00 ^{cde}	226.0 ^f	22.5	15.5°	12.0	9.8 ^b	254.3b
T8	62.66	46.66 ^{bcd}	37.33 ^{bcde}	22.66 ^{bcd}	270.0b	22.6	13.4 ^b	11.2	9.1 ^b	262.8 ^{cd}
T9	60.66	48.66bcd	40.00e	28.66e	245.0d	22.4	17.2°	14.4	10.5 ^b	285.4 ^f
T10	60.00	59.33e	52.66 ^f	43.33 ^f	202.3 ^g	20.2	25.6 ^d	32.6	43.4°	220.5a
CD @5%	NS	6.85	3.96	4.75	6.17	NS	2.04	3.76	4.61	7.50
CV%	7.28	8.18	6.03	11.57	1.45	-	8.10	16.89	22.78	1.62

PPT-28: Assessment of crop losses due to diseases and insect-pests in forage Cowpea

Locations: Ludhiana, Palampur, Rahuri, Bhubaneswar and Jhansi

Design: Paired plot design **Replication:** 7

Plot size: 5 x 5 m² Variety: Bundel Lobia-1

Treatments: 2 **T1:** Protected **T2:** Unprotected

Measures to be imposed under protected conditions as per need:

- For management of root rot and foliar diseases (anthracnose and leaf blight) of forage cowpea:
 - Seed treatment with tebuconazole 2DS @ 1g/kg seed + NSKP (50 g/kg seed) followed by two foliar sprays of 0.1 per cent propiconazole at 15 day interval.
- > For management of defoliators in forage cowpea:
 - Foliar application of *B. bassiana* @ 5g/L (1x10⁷ cfu/ml)
- For management of sucking pests and yellow mosaic virus incidence:
 - Two sprays of imidacloprid 17.8 SL @ 0.3 ml/lit at 15 days interval followed by two sprays of *Verticillium lecani* @ 5 g/L at 10 days interval.
 - Effort must be made for need based application of disease/pest management practices in protected plots.
 - Seed treatment with tebuconazole 2DS @ 1g/kg seed + NSKP (50 g/kg seed) is must. Application of management practices in standing crop should be done right at the start of disease/pests attack initiation in protected plots.

Observations

- Severity/incidence of different diseases (Root-rot, Anthracnose, Yellow mosaic virus, leaf blight) and insect-pests (defoliators and aphids) as per standard disease/pests specific rating scale in both protected and unprotected plots starting from date of appearance till crop maturity at weekly interval.
- > Green fodder yield in protected as well as unprotected plots.

Results:

At Palampur, in protected treatment, 72.37, 62.5, 75.0 and 64.6% control of root rot, foliar diseases, yellow mosaic virus and defoliators respectively was recorded with 73.02% increase over unprotected treatment. Hence, 73.02% losses occurred due to diseases and insect-pests in green fodder yield at Palampur (Table PPT-28a).

At Bhubaneswar, the incidence of root rot and anthracnose recorded was 4.04% and 12.89% in protected treatment compared to 17.21% and 38.83% respectively in unprotected treatment. The numbers of leaf defoliators per 10 plants were 1.68 in protected treatment compared to unprotected treatment (5.82). The number of aphids were 3.84 in protected plot (88.49% reduction in aphid infestation) when compared to the unprotected crop. The green fodder yield was 325.43 q/ha which showed an increase of 32.98% compared to unprotected plots (Table PPT-28b). Hence, around 32.98% losses occurred due to diseases and insect-pests at Bhubaneswar (Table PPT-28b).

At Rahuri, the population of cowpea aphid (*Aphis craccivora*) noticed was 7.72 aphids per stem (81.38% protection over control) in protected and 41.46 aphids in unprotected. The population of defoliators noticed was 0.89 per plant in protected (78.02% protection over control) and 14.30 per plant in unprotected plots. The severity of yellow mosaic virus noticed on cowpea was 17.70 in protected (45.61% protection over control) and 32.54 in unprotected plots. The green fodder yield was 326.86 q/ha which showed an increase of 32.14% compared to unprotected plots. Hence, 32.14% losses occurred due to diseases and insect-pests at Rahuri (Table PPT-28c).

At Jhansi, in protected treatment 30.99% control of defoliators was recorded with 22.94% increase in green fodder yield (153.1 q/ha) over unprotected treatment (124.6 q/ha). Hence, 22.94% losses occurred due to insect-pests at Jhansi (Table PPT-28d).

At Ludhiana, in protected treatment, 45.38% control of YMV and 26.24% control of defoliators was recorded as compared to unprotected treatment along with 19.25% increase in green fodder yield. Hence, 19.25% losses occurred due to diseases and insect-pests at Ludhiana (Table PPT-28e).

Table PPT-28a: Assessment of crop losses due to diseases and insect-pests in forage Cowpea

Treatments		Palampur												
	Root ro	ot	Foliar d	iseases	ΥM\	/	Defoliat	tors	Green Fo	dder yield				
	Incidence (%)	Control (%)	Severity (%)	Control (%)	Incidence (%)	Control (%)	Incidence (%)	Control (%)	(q/ha)	% loss				
T1	15.00 (22.75)	72.37	12.86 (20.91)	62.50	1.14 (1.43)	75.00	5.86 (13.96)	64.66	168.57	73.02				
T2	54.29 (47.45)	-	34.29 (35.79)	-	4.57 (2.36)	-	16.57 (23.98)	-	97.43	-				
t-cal	7.7E-6		1.1E-08		1.6E-08		4.2E-08		6.6E-6					
P-value	0.001		0.001		0.001		0.001		0.001					

Table PPT-28b: Assessment of crop losses due to diseases and insect-pests in forage Cowpea cont..

				В	hubaneswa	ar					
Treatments -		oot rot / t incidence (%)	Anthracnose severity (%)		Leaf defoliators (no./10 plants)				Aphids (no./top leaf)		Fodder yield
rreauments	Incidence (%)	Control (%)	Incidence (%)	Control (%)	Number	% Damage	Control (%)	Number	Control (%)	(q/ha)	% loss
T1	4.04	76.53	12.89	66.80	1.68	6.7	71.13	3.84	88.49	325.43	32.98
T2	17.21	-	38.83*	-	5.82	23.3	-	33.36*	-	244.71*	-
t Cal	2.35		8.95		1.31			10.33		11.89	
P-value	0.001		0.004		0.006			0.003		0.002	

Table PPT-28c: Assessment of crop losses due to diseases and insect-pests in forage Cowpea cont..

Treatments						Rahuri					
	Aphi	ds	Defoliator	rs		Y	MV	Leaf	blight	Green Fodder yield (q/ha)	% loss
	Mean	Control	Mean no./	%	Control	%	Control	%	Control		
	no./stem	(%)	plant	damage	(%)	severity	(%)	severity	(%)		
T1	7.72	81.38	0.89	6.12	78.02	17.70	45.61	18.00	96.17	326.86	32.14
T2	41.46		4.05	14.30		32.54		32.94		228.87	
t-cal	7.29		4.78	2.76		4.99		1.72		3.28	-
P-value	0.002		0.001	0.001		0.003		0.002		0.0001	

Table PPT-28d: Assessment of crop losses due to diseases and insect-pests in forage Cowpea cont..

Treatments	Jhansi											
	Defoliators dam	nage (%)	Green Fodder yield									
	Damage (%)	Control (%)	(q/ha)	% loss								
T1	31.50	30.99	153.1	22.94								
T2	45.64	-	124.6	-								
t-cal	14.52		8.70	-								
P-value	<0.0001		<0.0001									

Table PPT-28e: Assessment of crop losses due to diseases and insect-pests in forage Cowpea cont.

Treatments		Ludhiana												
	,	YMV			Defoliators		GFY (q/ha)							
	Incidence (%) Disease Control (5 DAS	7 DAS	Defoliators (% damage)	Control	(q/ha)	% loss						
						(%)								
T1	9.09 (17.47)	45.38	3.2a	2.60a	20.80	26.24	574.4	19.25						
T2	17.42 (24.64)		6.2b	6.00b	28.20		481.7							
t-cal	1.10		1.56	1.30			3.50							
P-value	0.0001		0.001	0.001			0.0001							

PPT- 29: Eco friendly management of Zonate leaf spot of Sorghum

Location: Palampur

Treatments: 9 Replications: 3 Design: RBD Plot size: 3x2 m²

Treatments:

T1: Three foliar spray of *Trichoderma viride* @ 0.5%

T2: Three foliar spray of *Psuedomonas flourescens* @ 0.5%

T3: Three foliar spray of Jeevamrit @ 10%

T4: Three foliar spray of Tamarlassi @ 10%

T5: Three foliar spray of extract of eupatorium ark @ 10%

T6: Three foliar spray of Azadirachtin 3000 ppm @ 0.3%

T7: Three foliar spray of Panchgavya @ 10%

T8: Three foliar spray of propiconazole @ 0.1% (Chemical control)

T9: Control

*Sprays given at 7 days interval starting from disease appearance.

Observations:

- Disease severity (%) at 7 days interval starting from disease onset.
- > AUDPC and rate of infection in different treatments
- Green Fodder Yield (q/ha)

Results:

The experiment was conducted with 9 treatments having 3 replications in RBD at Palampur for the management of zonate leaf spot (*Gloeocercospora sorghi*) of Sorghum using non chemical methods. Among all the treatments, three foliar spray of propiconazole @ 0.1% (Chemical check) was found most effective which gave 65.04% disease control with 18.48% increase in the green fodder yield over control. Among the non-chemical methods, three foliar sprays of extract of eupatorium ark @ 10% giving 49.19% disease control with 12.35% increase in the yield over control was found best followed by three foliar spray of Tamarlassi @ 10% with 47.15% disease control with 7.81% increase in the yield over control. Three foliar sprays of Panchgavya @ 10% was also found effective with 43.09% disease control and 15.63% increase in the yield. The higher yield in Panchgavya may be due to its nutritional effect on the host. The values of r/day and AUDPC were observed minimum i.e. 0.07 and 462.0 respectively, in chemical check. Among non- chemical treatments, minimum r and AUDPC were observed in treatment having three foliar spray of extract of eupatorium ark @ 10% i.e. 0.09 and 565.83, respectively. This was followed by three foliar spray of Tamarlassi @ 10% having r=0.09 and AUDPC=572.83, respectively. In control the disease severity was 82.0% with maximum r (0.11) per day, AUDPC (800.33) and minimum GFY (315.7 g/ha).

Table PPT-29: Eco friendly management of zonate leaf spot of Sorghum

Treatment		Zor	ate leaf s	pot of Sorgh	um		Green fodder		
	Zonate lea	f spot	r (p	er week)	AL	IDPC	yi	eld	
	Terminal	Control	r	Relative	AUDPC	Relative	(q/ha)	Increase	
	mean	(%)		infection		AUDPC (%)		over	
	severity (%)			rate (%)				check (%)	
T1	55.67	32.11	0.09^{b}	87.50	673.17 ^{cd}	84.11	331.7 ^{cd}	5.07	
	(48.24) ^c								
T2	58.33	28.86	0.09b	87.50	689.50 ^d	86.15	325.3 ^d	3.06	
	(49.78) ^c								
Т3	50.00	39.02	0.09b	87.50	648.67 ^{cd}	81.05	349.3c	10.67	
	(44.98) ^{bc}								
T4	43.33	47.15	0.09b	87.50	572.83bc	71.57	340.3d	7.81	
	(41.12) ^b								
T5	41.67	49.19	0.09b	84.38	565.83b	70.70	354.7c	12.35	
	(40.10) ^b								
T6	48.33	41.06	0.10b	93.75	628.83c	78.57	359.3bc	13.83	
	(44.03) ^{bc}								
T7	46.67	43.09	0.10b	93.75	609.00b	76.09	365.0b	15.63	
	(43.07) ^{bc}								
T8	28.67	65.04	0.07a	62.50	462.00a	57.73	374.0a	18.48	
	(32.36) ^a								
Т9	82.00	-	0.11c	100.00	800.33e	100.00	315.7e	-	
	(64.90) ^d								
CD (5%)	5.47		0.01		60.34		6.69		
CV	6.90		0.02		5.69		1.11		

PPT-30: Management of root rot and wilt in cowpea

Location: Bhubaneswar

Treatments: 8 Replications: 3 Design: RBD Plot size: 3x2 m²

Treatments:

T1: Soil application of *T. viride* @ 4 kg/ha enriched in FYM @ 250 kg/ha as basal + seed treatment with *Trichoderma viride* @ 5g/kg seed

- **T2:** Soil application of *T. viride* @ 4 kg/ha enriched in FYM @ 250 kg/ha as basal + seed treatment with *Pseudomonas fluorescens* @ 5g/kg seed
- **T3:** Soil application of *T. viride* @ 4 kg/ha enriched in FYM @ 250 kg/ha as basal + seed treatment with *Bacillus subtilis* @ 5g/kg seed
- **T4:** Soil application of *T. viride* @ 4 kg/ha enriched in FYM @ 250 kg/ha as basal + seed treatment with *Aspergillus niger* @ 5g/kg seed
- **T5:** Soil application of *T. viride* @ 4 kg/ha enriched in FYM @ 250 kg/ha as basal + seed treatment with chitosan @ 0.05%
- **T6:** Soil application of *T. viride* @ 4 kg/ha enriched in FYM @ 250 kg/ha as basal + seed treatment with neem seed extract @ 5%
- T7: Soil application of *T. viride* @ 4 kg/ha enriched in FYM @ 250 kg/ha as basal + seed treatment with tebuconazole 2DS @ 1g/kg seed

T8: Control

Observations:

- Germination percentage
- > Root rot and wilt incidence at weekly interval starting from disease onset
- > AUDPC and rate of infection in different treatments
- Green fodder yield (q/ha)

Results:

Among various treatments for management of root rot and wilt in forage cowpea, the chemical seed treatment with tebuconazole 2DS @ 1g/kg seed along with basal soil application of *T. viride* @ 4kg/ha enriched in FYM @ 250 kg/ha was the best treatment with 93.5% germination which reduced the disease by 58.1% and increased the yield by 17.6% compared to control. Among nonchemical treatments, seed treatment with *T. viride* along with basal application of the same bio agent was found superior recording 87.2% germination followed by *P. fluorescens* (84.5%). The *T. viride* treatment reduced the disease by 48.1% and increased the yield by 14.0% when compared to control.

PPT 30: Management of root rot-wilt complex in cowpea

Treatments	Germination	Terminal	Disease	AUDPC	Rate of	GFY	Increase
	(%)	root	reduction		infection	(q/ha)	in yield
		rot/wilt					
		complex					
		severity					
T1	87.2 ^d	25.1b	48.1	517.65 ^b	0.045bc	340.4 ^d	14.0
T2	84.5 ^d	29.4°	39.3	609.35°	0.045 ^{bc}	342.8d	14.8
T3	76.8 ^b	34.8 ^d	28.1	719.25 ^e	0.046°	331.5°	11.0
T4	76.6b	29.2°	39.7	647.50 ^d	0.030a	324.1b	9.5
T5	80.4°	33.6 ^d	30.6	617.05°	0.053 ^{cd}	335.3°	12.3
T6	78.2 ^{bc}	24.2 ^b	50.0	523.25 ^b	0.033 ^{ab}	330.6°	10.7
T7	93.5e	20.3ª	58.1	408.80a	0.041 ^{abc}	351.2e	17.6
T8	73.2ª	48.4e	-	952.7 ^f	0.060 ^d	298.6ª	-
CD (5%)	3.17	2.98		11.38	0.01	5.01	-
CV (%)	2.23	5.40		1.04	14.85	0.86	-

PPT-31: Estimation of yield losses due to insect-pests in fodder sorghum

Location: Rahuri, Coimbatore

Treatments: 8 Replications: 3 Design: RBD Plot size: 4x4 m²

Treatments:

T1: Seed treatment with Thaimethoxam 30 FS @ 2g/kg of seed + spray at 7, 15, 25, 40, 75, 90 days after emergence (DAE)

T2: Seed treatment with Thaimethoxam 30 FS @ 2g/kg of seed + spray at 7, 15, 25 and 75 DAE

T3: Seed treatment with Thaimethoxam 30 FS @ 2g/kg of seed + spray at 7, 15, 40 and 90 DAE

T4: Seed treatment with Thaimethoxam 30 FS @ 2g/kg of seed + spray at 7, 15, 25 and 40 DAE

T5: Seed treatment with Thaimethoxam 30 FS @ 2g/kg of seed + spray at 7, 15, 75 and 90 DAE

T6: Seed treatment with Thaimethoxam 30 FS @ 2g/kg of seed + spray at 25, 40, 75 and 90 DAE

T7: Seed treatment with Thaimethoxam 30 FS @ 2g/kg of seed

T8: Control

Treatment information:

- > Spray at 7 and 15 DAE of Azadirachtin 3000 ppm @ 2ml/ lit of water for management of shootfly
- Spray at 25 and 40 DAE of Emamectin benzoate 5 WG @ 0.5g /lit of water for management of fall armyworm
- > Spray at 75 and 90 DAE of imidacloprid 17.8 SL @ 0.3ml/lit of water for management of aphids

Observations:

- Number of larva and adults of shootfly on five randomly selected leaves per plant (5 plants will be randomly selected/plot) and % damage (in terms of deadhearts) by shootfly at 5 days interval starting from pest emergence till pest presence.
- Number of larva and adults of armyworm on five randomly selected leaves per plant (5 plants will be randomly selected/plot) and % damage by armyworm at 5 days interval starting from pest emergence till pest presence.
- Number of nymphs and adults on five randomly selected plants and % damage by aphids at 5 days interval starting from pest emergence till pest presence.
- Green fodder yield (g/ha) in different treatments.
- Percent Yield loss in different treatments.

Results:

Rahuri

Shootfly

At 30 DAE, significantly least numbers of shootfly larvae were recorded in T5 (0.53) followed by T3 (0.57), T4 (0.64), T1 (0.74) and T2 (0.78) which were at par with each other. At 30 DAE, significantly least numbers of shootfly adults were recorded in T3 (0.41) followed by T5 (0.45) and T1 (0.47) which were at par with each other (Table PPT-Rahuri 31a). At 15 DAE, significantly least numbers of dead hearts were recorded in T3 (5.67) followed by T5 (5.74), T2 (6.77) and T1 (7.59) which were at par with each other. Similar trend were observed at 20, 25 and 30 DAE (Table Rahuri PPT-31b).

Fall Army Worm

Before application of sprays on 25 DAE, all the treatments were found non significant. At 30 DAE significantly least numbers of percent infestation were recorded in T4 (5.57) which was at par with T1 (6.23), T2 (6.01) and T6 (6.80) as compared with remaining treatments T5 (21.65), T3 (22.65) and T7 (22.44), T8 (22.91). Similar trend were observed at 35 and 40 DAE. However at 45 DAE percent infestation was recorded significantly lowest in T4 (0.57) and was at par with T6 (0.78), T1 (0.90),T6 (6.80) and next best treatment was T2 (4.67) as compared with remaining treatments (Table Rahuri PPT-31b).

Aphid

Differences in aphid infestation on sorghum before application of sprays at 75 DAE was non-significant. However, after spray at 100 DAE significantly lowest numbers of aphids were observed in T5 (13.78) followed by T1 (14.78) and T6 (15.58) (Table Rahuri PPT-31b).

Green forage yield: The results presented in table 20 indicated that the significantly highest green forage yield (468.72 q/ha) was observed in T1 followed by T5 (444.25 q/ha) (Table Rahuri PPT-31b).

Yield loss: Percent yield loss in sorghum were estimated to be 43.10% (T8). Yield losses due to shootfly alone were estimated to be around 25.62% (T6). Yield losses due to fall armyworm were estimated to be around 5.22% (T5). Yield losses due to aphids were estimated to be around 20.97 % (T4) (Table Rahuri PPT-31b).

Coimbatore

Shoot fly: The initial population of shoot fly ranged from 0.43 to 0.52 larvae/plant and the per cent damage was from 11.5 to 13.53%. The population of shoot fly and percent damage was reduced at 15 DAE in all the treatments except T7 (Seed treatment with thiamethoxam 30 FS @ 2g/kg of seed) and untreated check. The best treatment was T1 which recorded mean population of shoot fly 0.44 /plant, 0.31/plant and 0.43/plant at 7, 15 and 25 DAE respectively. The percent damage recorded in T1 was 11.50, 6.79 and 6.28 on 7, 15 and 25 DAE respectively. It was followed by T2, T3 and T4 (Table Coimbatore PPT-31a).

Fall Armyworm: The percent damage of fall armyworm was lowest in T1 and T6 in which the damage was 6.79% at 45 DAE (Table Coimbatore PPT-31b).

Yield: The highest yield was recorded in T1 (104.76 q/ha) followed by T4 (101.00 q/ha) (Table Coimbatore PPT-31b).

Yield loss: Percent yield loss in sorghum was estimated to be 32.23% (T8). Yield losses due to shootfly alone were estimated to be around 15.68% (T6). Yield losses due to fall armyworm were estimated to be around 6.14% (T5) (Table Coimbatore PPT-31b).

Table Rahuri PPT-31a: Estimation of yield losses due to insect-pests in fodder sorghum at Rahuri

Treatments		Mean shootfly	larvae/5 plants	-		Mean shootfly	adults/5 plants	
	15 DAE	20 DAE	25 DAE	30 DAE	15 DAE	20 DAE	25 DAE	30 DAE
T1	1.16°	0.92 ^{cd}	0.81 ^{ab}	0.74 ^{ab}	0.70 ^{ab}	0.55 ^{ab}	0.52 ^{ab}	0.47 ^{ab}
11	(1.29)	(1.19)	(1.14)	(1.11)	(1.10)	(1.03)	(1.01)	(0.99)
T2	1.29 ^{cd}	0.89 ℃	0.83 ^{ab}	0.78 ^{ab}	1.15 ^{cd}	0.79 ^{ab}	0.73°	0.64 ^{ab}
12	(1.34)	(1.18)	(1.15)	(1.13)	(1.28)	(1.14)	(1.11)	(1.07)
Т3	0.98 ^{ab}	0.73 ^{ab}	0.57 a	0.57 ^{ab}	0.68a	0.52 a	0.44 a	0.41a
13	(1.22)	(1.11)	(1.04)	(1.03)	(1.09)	(1.01)	(0.97)	(0.95)
T4	1.06 ^{ab}	0.74 ^{ab}	0.60 ^{ab}	0.64 ^{ab}	0.93c	0.65 ^{ab}	0.53 ^{ab}	0.59 ^{ab}
14	(1.25)	(1.12)	(1.05)	(1.07)	(1.20)	(1.07)	(1.02)	(1.04)
T5	0.87ª	0.66 a	0.66 ^{ab}	0.53ª	0.71 ^{ab}	0.53 ^{ab}	0.51 ^{ab}	0.46 ^{ab}
13	(1.17)	(1.08)	(1.08)	(1.02)	(1.10)	(1.02)	(1.01)	(0.98)
Т6	2.22 ^e	1.81 ^e	1.67⁰	1.85 ^{cd}	1.52 ^{ef}	1.25 ^{cd}	1.15 ^{ef}	1.25 ^{cd}
10	(1.65)	(1.52)	(1.47)	(1.53)	(1.42)	(1.32)	(1.28)	(1.32)
Т7	2.39 ^{ef}	1.90 ^{ef}	1.71 ^{cd}	1.77 ℃	1.44 ^e	1.22°	1.04 ^e	1.08c
17	(1.70)	(1.55)	(1.49)	(1.51)	(1.39)	(1.31)	(1.24)	(1.26)
Т8	2.67 ⁹	2.879	3.05 ^e	3.04 ^e	1.82 ⁹	1.97 ^e	2.12 ⁹	2.09e
10	(1.78)	(1.83)	(1.88)	(1.88)	(1.52)	(1.57)	(1.62)	(1.61)
CD @5%	0.06	0.08	0.15	0.14	0.08	0.16	0.12	0.18
CV%	6.50	7.65	6.62	6.39	7.73	7.58	5.90	8.77

Table Rahuri PPT-31b: Estimation of yield losses due to insect-pests in fodder sorghum at Rahuri

Treatments			ts of sho				tation by					population		GFY	Yield
	15	20	25	30 DAE	25 DAE	30 DAE	35 DAE	40 DAE	45 DAE	75 DAE	80 DAE	85 DAE	90 DAE	(q/ha)	Loss
	DAE	DAE	DAE												(%)
T1	10.35ª	8.32a	8.89 ^{ab}	7.59 ^{ab}	16.52ª	6.23 ^{ab}	2.57 ^{ab}	1.57 ^{ab}	0.90 ^{ab}	58.56a	20.37 ^{ab}	17.14 ^{ab}	14.78ab	468.72 a	-
11	(18.76)	(16.77)	(17.35)	(15.99)	(23.98)	(14.46)	(9.22)	(7.19)	(5.44)	(7.69)	(4.57)	(4.20)	(3.91)		
T2	13.09 ^{ab}	10.31 ^{ab}	9.10 ^{ab}	6.77 ^{ab}	15.06ª	6.01 ^{ab}	2.34 ^{ab}	2.01 ^{ab}	4.67°	52.80a	18.81 ^{ab}	15.38 ^{ab}	18.02 ^{ab}	393.68 ^{cd}	16.01
12	(21.21)	(18.73)	(17.56)	(15.08)	(22.83)	(14.19)	(8.80)	(8.14)	(12.48)	(7.30)	(4.39)	(3.98)	(4.30)		
Т3	13.04 ^{ab}	11.75°	7.67ª	5.67a	20.74ª	22.6 ^{cd}	23.98℃	24.65°	9.98 ^d	53.12a	62.09 ^{cd}	63.91 ^{cd}	21.23 ^{ab}	402.81 c	14.06
10	(21.17)	(20.05)	(16.08)	(13.78)	(27.09)	(28.42)	(29.32)	(29.77)	(18.42)	(7.32)	(7.91)	(8.03)	(4.66)		
T4	12.18 ^{ab}	9.60 ^{ab}	8.02 ^{ab}	6.02 ^{ab}	18.34ª	5.57ª	2.23a	1.23ª	0.57ª	51.21ª	64.23 ^{cd}	67.14 ^{cd}	68.73 ^{cd}	370.45 ^{cd}	20.97
14	(20.43)	(18.05)	(16.45)	(14.20)	(25.36)	(13.65)	(8.59)	(6.38)	(4.32)	(7.19)	(8.05)	(8.22)	(8.32)		
T5	12.14 ^{ab}	8.54 ^{ab}	7.74 ^{ab}	5.74 ^{ab}	16.70ª	21.65°	24.32 ^{cd}	25.32 ^{cd}	27.32°	53.29ª	16.71 ^{ab}	16.46ab	13.78ª	444.25 ^{ab}	5.22
10	(20.39)	(16.99)	(16.15)	(13.86)	(24.12)	(27.73)	(29.55)	(30.21)	(31.51)	(7.33)	(4.15)	(4.12)	(3.78)		
Т6	24.93c	21.61 ^d	18.99°	20.66c	17.07ª	6.80 ^{ab}	2.47 ^{ab}	1.80 ^{ab}	0.78 ^{ab}	48.90a	15.30a	14.60ª	15.58 ^{ab}	348.64 ^{cd}	25.62
10	(29.96)	(27.70)	(25.84)	(27.03)	(24.40)	(15.12)	(9.04)	(7.71)	(5.08)	(7.03)	(3.97)	(3.89)	(4.01)		
T7	25.38 ^{cd}	22.3 de	19.01 ^{cd}	21.18 ^{cd}	16.76ª	22.44 ^{cd}	24.44 ^{cd}	26.11 ^{cd}	27.44 ^{cd}	53.27ª	56.26°	60.18 ^{cd}	66.48°	285.52e	39.09
• •	(30.25)	(28.22)	(25.85)	(27.40)	(24.17)	(28.28)	(29.63)	(30.73)	(31.59)	(7.33)	(7.53)	(7.79)	(8.18)		
Т8	30.03 ^{cd}	32.56 ^f	33.83e	35.16e	16.51ª	22.91 ^{cd}	25.24 ^{cd}	26.91 ^{cd}	28.58 ^{cd}	49.96ª	58.29 ^{cd}	58.04℃	68.32 ^{cd}	267.35ef	43.10
10	(33.23)	(34.79)	(35.56)	(36.37)	(23.98)	(28.60)	(30.16)	(31.25)	(32.31)	(7.10)	(7.67)	(7.65)	(8.30)		
CD @5%	3.74	2.56	2.17	2.71	NS	4.92	4.55	4.73	5.48	NS	1.43	1.45	1.10	34.37	
CV%	8.79	6.49	5.84	7.61	8.28	13.25	12.85	14.49	17.99	9.89	13.69	13.92	11.11	8.27	

Table Coimbatore PPT-31a: Estimation of yield losses due to insect-pests in fodder sorghum at Coimbatore

Treatments	Me	ean shootfly larvae/5	plants	%	dead hearts of sho	otfly
	7 DAE	15 DAE	25 DAE	7 DAE	15 DAE	25 DAE
T1	0.44 a	0.31a	0.43a	11.50 a	6.79 a	6.28 a
11	(0.66)	(0.56)	(0.66)	(19.86)	(17.73)	(15.11)
T2	0.43 a	0.44 ab	0.43 a	11.54 a	9.27 b	6.28 a
12	(0.66)	(0.66)	(0.66)	(19.86)	(14.52)	(15.11)
Т3	0.44 a	0.32 a	0.43a	11.50 a	9.27 b	9.25 b
13	(0.66)	(0.56)	(0.66)	(19.86)	(3.04)	(17.73)
T4	0.51 b	0.34 bc	0.52b	13.43 b	9.27 b	9.27 b
14	(0.72)	(0.58)	(0.72)	(21.50)	(17.73)	(17.73)
T5	0.52 b	0.33 ab	0.52 b	13.43 b	11.53 °	9.25 b
13	(0.72)	(0.57)	(0.72)	(21.50)	(19.86))	(17.73)
Т6	0.44 a	0.51 ^c	0.44 a	11.54 a	13.43 ^d	16.43 d
10	(0.66)	(0.71)	(0.66)	(19.86)	(21.50)	(23.91)
T7	0.43 a	0.63 d	0.44a	13.44 b	16.43 e	14.88 ^c
17	(0.66)	(0.79)	(0.66)	(21.50)	(23.91)	(22.69)
Т8	0.43 a	0.62 d	0.44 a	11.54 a	17.85 ^f	17.85 e
10	(0.66)	(0.79)	(0.66)	(19.86)	(25.00)	(25.00)
CD @5%	0.015	0.104	0.015	0.018	0.085	0.096
CV%	0.037	0.134	0.039	0.082	0.411	0.473

Table Coimbatore PPT-31b: Estimation of yield losses due to insect-pests in fodder sorghum at Coimbatore

Treatments			% plant infe	station by fal	l armyworm			GFY (q/ha)	Yield loss(%)
	15 DAE	20 DAE	25 DAE	30 DAE	35 DAE	40DAE	45 DAE		
T1	13.43 ^b	11.53b	16.43a	11.54a	11.54a	22.46c	6.79a	104.76a	-
11	(21.50)	(19.86)	(23.91)	(19.86)	(11.54)	(28.29)	(15.11)		
T2	13.44b	11.54b	16.44a	16.43°	17.85 ^c	21.47b	16.43°	98.43 ^c	6.04
12	(21.50)	(19.86)	(23.91)	(23.91)	(25.00)	(27.61)	(23.91)		
T3	13.43b	16.43 d	17.85 ^b	19.00 ^d	20.27 d	20.27a	9.10 ^b	99.78 bc	4.75
13	(21.50)	(23.91)	(25.00)	(25.84)	(26.76)	(26.76)	(17.55)		
T4	11.53a	9.27a	16.43a	11.54ª	24.65 ^f	21.47b	21.39 ^d	101.00 b	3.59
14	(19.86)	(17.73)	(23.91)	(19.86)	(29.77)	(27.61)	(27.55)		
T5	11.53a	14.88e	17.85 ^b	19.00 ^d	23.58e	21.39b	23.58e	98.33 ^c	6.14
13	(19.86)	(22.69)	(25.00)	(25.84)	(29.05)	(27.55)	(29.05)		
T6	17.85 ^d	17.85e	23.57e	14.77 ^b	14.77 ^b	24.65d	6.79a	88.33 d	15.68
10	(25.00)	(25.00)	(29.05)	(22.60)	(22.60)	(29.77)	(15.11)		
T7	16.43c	21.47 ^f	20.26c	18.90e	23.58e	24.65d	23.58e	73.67 e	29.68
17	(23.91)	(27.61)	(26.76)	(25.77)	(29.05)	(29.77)	(29.05)		
T8	19.00e	20.26 ^g	19.00 ^d	21.38 ^d	24.65 ^f	24.64d	27.55 ^f	71.00 ^f	32.23
	(25.84)	(26.76)	(25.84)	(27.55)	(29.77)	(29.77)	(31.66)		
CD @5%	0.036	0.059	0.122	0.106	0.155	0.107	0.241	2.073	_
CV%	0.140	0.219	0.376	0.364	0.441	0.270	0.976	1.314	

PPT-32: Estimation of yield losses due to foliar diseases (anthracnose, gray leaf spot and zonate leaf spot) in fodder sorghum

Location: Ludhiana, Palampur, Jhansi

Treatments: 8 Replications: 3 Design: RBD Plot size: 4x4 m²

Treatments:

T1: Seed treatment with carbendazim (2g/kg) + foliar spray of propiconazole @ 1ml/l at 20 and 35 days after emergence (DAE)

T2: Seed treatment with carbendazim (2g/kg) + foliar spray of propiconazole @ 1ml/l at 20 DAE

T3: Seed treatment with carbendazim (2g/kg) + foliar spray of propiconazole @ 1ml/l at 35 DAE

T4: Foliar spray of propiconazole @ 1ml/l at 20 and 35 DAE

T5: Foliar spray of propiconazole @ 1ml/l at 20 DAE

T6: Foliar spray of propiconazole @ 1ml/l at 35 DAE

T7: Seed treatment with carbendazim (2g/kg)

T8: Control

Treatment information:

- Seed treatment with carbendazim (2g/kg) for managing seed borne inoculum.
- Foliar spray at 20 and 35 DAE of propiconazole @ 1ml/l for the management of foliar diseases (anthracnose, gray leaf spot and zonate leaf spot) for managing air borne inoculum.

Observations:

- ➤ Disease severity (%) of respective disease on 10 randomly selected plants per replication per treatment at 5 days interval starting from 10 days after emergence till crop harvesting.
- AUDPC and rate of infection in different treatments.
- ➤ Fodder quality attributes viz., Crude protein (%), ADF (%), NDF (%) in different treatments at the time of harvesting.
- Green fodder yield (g/ha) in different treatments.
- Percent quantitative and qualitative yield loss in different treatments.

Results

Palampur

The experiment was conducted to assess the crop losses due to foliar diseases in forage sorghum. During the season, there was heavy infection of zontate leaf spot disease. Among all the treatments, the two foliar sprays of propiconazole @ 1ml/l at 20 and 35 DAE was found most effective which gave 46.5% disease control with 22.14% increase in the green fodder yield over check. This was followed by seed treatment with carbendazim (2g/kg) + foliar spray of propiconazole @ 1ml/l at 20 and 35 DAE with 45.4% disease control with 23.47% increase in the yield over check. The values of r/day and AUDPC were also observed as 0.04 and 534.33 respectively in treatment having two foliar sprays of propiconazole @ 1ml/l at 20 and 35 DAE. This was followed by seed treatment with carbendazim (2g/kg) + foliar spray of propiconazole @ 1ml/l at 20 and 35 DAE having r 0.04 and AUDPC 537.50, respectively. In control, the disease severity was 61.7%with maximum r (0.12) per day and AUDPC (842.33) and minimum GFY (326.67g/ha).

The crude protein increased from 3.43 to 17.1% in treatments as compared to control being maximum in T1, T2 and T4. ADF increase only in T4, T5 and T7 by small margin (0.6 to 1.1%) and in rest of the treatments decrease in ADF(%) was seen. NDF(%) decreased (-1.34 to -4.01%) in different treatments as compared to control. Maximum green fodder yield loss recorded due to the disease was 19% in control compared to best treatment (T1) during the season (Table Palampur PPT-32a).

Ludhiana

The experiment was conducted to assess the crop losses due to foliar diseases in forage sorghum. Disease severity was observed very less in T1 [Seed treatment with carbendazim (2g/kg) + foliar spray of propiconazole @ 1ml/l at 20 and 35 days after emergence (DAE)] followed by T3 [Seed treatment with carbendazim (2g/kg) + foliar spray of propiconazole @ 1ml/l at 35 DAE] and T4 [Foliar spray of propiconazole @ 1ml/l at 20 and 35 DAE] with 28.67, 32.33 and 36.00% in case of grey leaf spot and 29.00, 37.00 and 39.67 respectively in case of anthracnose as compared to control (48.00 and 45.67%). Likewise, AUDPC values were also found lowest (958.33 and 741.67) in T1 as compared to check (1345.0 and 1052.50). The crude protein increased from 2.5 to 15.2% in some treatments (T1, T3, T7) as compared to control being maximum in T7. In rest of the treatments, decrease in CP (%) was seen. ADF increase only in T6 by 8.4% and in rest of the treatments decrease in ADF (%) was seen as compared to control. NDF (%) decreased (-1.3 to -8.1%) in different treatments as compared to control. Green fodder yield loss recorded due to the diseases (gray leaf spot and anthracnose) was 30% in control compared to best treatment (T1) during the season (Table Ludhiana PPT-32b).

Jhansi

The experiment was conducted to assess the crop losses due to foliar diseases in forage sorghum. During the season, heavy infection of zontate leaf spot was observed. Terminal disease severity was observed very less in T1 [Seed treatment with carbendazim (2g/kg) + foliar spray of propiconazole @ 1ml/l at 20 and 35 days after emergence (DAE)] followed by T4 [Foliar spray of propiconazole @ 1ml/l at 20 and 35 DAE] with 36.3 and 39.4% percent as compared to control (66.3%). Likewise, AUDPC values were also found lowest (974.1 and 1038.7) in T1 and T4 as compared to check (1292.1). The crude protein increased from 0.2 to 9.1% in all the treatments (except T7 in which CP% decreased) as compared to control being maximum in T1 and T5. ADF% decreased in all the treatments when compared to control. NDF (%) increased only in T1 (6.5%) and in T3 (0.1%)very slight was seen in NDF%. In rest of the treatments, NDF% decreased (-0.8 to -6.4%) as compared to control. Green fodder yield was maximum in T1 (453.1 q/ha) as compared to control 379.6 q/ha. Maximum green fodder yield loss recorded due to the zonate leaf spot was 16.2% in control compared to best treatment (T1) during the season (Table Jhansi PPT-32c).

Table Palampur PPT-32a: Estimation of yield losses due to foliar diseases (anthracnose, gray leaf spot and zonate leaf spot) in fodder sorghum at Palampur

Treatment	Zonate leaf spot of Sorghum							Quality (Characters			GF	Υ
	Zonate leaf spot	r (pe	r (per day)		PC	Crude	protein		ADF		NDF		
	Severity (%)	Rate (r)	Relative	AUDPC	Relative	Crude	%	ADF	%	NDF	%	(q/h)	Yield
			infection		AUDPC	protein	increase	(%)	increase	(%)	increase		loss
			rate (%)		(%)	(%)							(%)
T1	33.67 (35.45)ª	0.05a	39.76	537.50a	45.08	10.21ª	17.1	67.40	-3.0	58.20	-2.7	403.33a	-
T2	36.00 (36.85) ^{ab}	0.09b	72.49	543.33 ^{ab}	45.57	10.21ª	17.1	68.20	-1.8	57.40	-4.2	381.00b	5.5
Т3	39.33 (38.82)bc	0.06a	44.92	564.67b	47.36	9.62 ^{ab}	12.1	67.80	-2.4	58.60	-2.0	375.67b	6.9
T4	33.00 (35.04)ª	0.04a	30.61	534.33ª	44.81	10.21ª	17.1	69.80	0.6	57.80	-3.5	399.00a	1.1
T5	37.00 (37.45)b	0.09b	72.49	592.67°	49.71	9.33 ^{bc}	9.3	70.20	1.1	59.00	-1.4	385.33b	4.5
T6	40.67 (39.60)°	0.12 ^c	94.23	672.00 ^d	56.36	9.04 ^{bcd}	6.4	68.40	-1.5	57.40	-4.2	377.33b	6.4
T7	43.00 (40.96)°	0.11b	82.35	616.00°	51.66	8.75 ^{cd}	3.3	70.00	0.9	58.60	-2.0	331.33°	17.9
T8	81.67 (64.67) ^d	0.13°	100.00	1192.33e	100.00	8.46d	-	69.40	-	59.80	-	326.67°	19.0
CD (5%)	1.88	0.02		29.44		0.77						13.86	
CV	2.59	15.06		2.75		4.57						2.11	

^{*}Figures in parentheses are arc sine transformed values

Table Ludhiana PPT 32 (b): Estimation of yield losses due to grey leaf spot in fodder sorghum at Ludhiana

Treatme	Terminal mean gray	n gray	Rate of	Terminal mean		Rate of		<u> </u>	Quality	y parameter	'S		GFY (q/ha)	Yield loss
nts	leaf spot severity (%)	AUDPC	infection	anthracnose severity (%)	AUDPC	infection	CP (%)	% increa se	ADF (%)	% increase	NDF (%)	% increase		(%)
T ₁	28.67 ⁹	958.3e	0.056ª	29.00e	741.67 ^f	0.082ª	8.0	2.5	36.8	-6.8	60.2	-6.6	485.0ª	-
T ₂	44.00°	1250.8b	0.078ª	42.00 ^{bc}	933.33°	0.086ª	7.5	-4.0	37.4	-5.1	61.3	-4.7	406.6d	16
T ₃	32.33 ^f	1049.1 ^d	0.083ª	37.00 ^d	825.00°	0.085ª	8.7	10.3	35.3	-11.3	59.4	-8.1	462.2b	5
T ₄	36.00e	1122.5°	0.064ª	39.67°	875.83d	0.085ª	7.3	-6.8	36.7	-7.1	63.4	-1.3	459.4b	5
T ₅	44.67 ^{bc}	1270.0b	0.086ª	43.00b	979.17b	0.086ª	7.8	0.0	38.4	-2.3	62.2	-3.2	379.2e	22
T ₆	38.67 ^d	1154.1°	0.065ª	40.33°	919.17°	0.065ª	7.6	-2.6	42.9	8.4	62.5	-2.7	429.2°	11
T ₇	46.33 ^{ab}	1320.0ª	0.066ª	43.33b	1007.5b	0.086ª	9.2	15.2	36.3	-8.3	60.3	-6.5	355.0 ^f	27
T ₈	48.00ª	1345.0ª	0.072ª	45.67ª	1052.5ª	0.066ª	7.8	-	39.3	-	64.2	-	341.6 ^f	30
CD (5%)	2.127	37.293	NS	2.287	38.785	NS				-			15.51	
CV	3.019	1.782	21.547	3.233	2.393	17.843							2.115	

AICRP on Forage Crops & Utilization

Table Jhansi PPT 32 (c): Estimation of yield losses due to foliar diseases (anthracnose, gray leaf spot and zonate leaf spot) in fodder sorghum at Jhansi

Treatment	Zonate lea		Q	uality Cha	racters			GFY			
	Terminal mean	AUDPC	Rate (r)	Crud	e protein		ADF		NDF		
	zonate leaf spot Severity (%)			Crude protein (%)	% increase	ADF (%)	% increase	NDF (%)	% increase	(q/h)	Yield loss (%)
T1	36.3e	974.1 ^d	0.026 ^d	11.85	9.1	37.94	-20.4	71.62	6.5	453.1ª	-
T2	43.3 ^{cd}	1083.7bc	0.030 ^{cd}	11.75	8.3	39.91	-14.4	65.99	-1.5	429.8 ^{ab}	5.14
T3	46.2 ^{bc}	1111.5 ^b	0.029 ^{cd}	10.79	0.2	42.21	-8.2	67.00	0.1	414.6 ^{bc}	8.50
T4	39.4 ^{de}	1038.7°	0.028 ^{cd}	11.04	2.4	41.61	-9.8	65.87	-1.7	432.3 ^{ab}	4.59
T5	46.7 ^{bc}	1087.6bc	0.035bc	11.85	9.1	42.09	-8.5	66.95	0.0	402.1 ^{cd}	11.26
Т6	45.8°	1123.6b	0.031 ^{cd}	11.42	5.7	42.67	-7.0	66.43	-0.8	398.5 ^{cd}	12.04
T7	51.4b	1145.0b	0.040b	10.33	-4.3	45.36	-0.7	62.92	-6.4	382.1 ^d	15.67
T8	66.3ª	1292.1ª	0.058ª	10.77	-	45.67	-	66.96	-	379.6 ^d	16.23
CD (5%)	5.42	62.27	0.009							24.10	
CV	6.59	3.21	14.39							3.34	

Breeder Seed Production in Forage Crops (*Kharif-*2021) [Indent Year Kharif 2022]

(Table reference: Tables BSP 1, 2)

In *Kharif*-2021, the indent for breeder seed production (Indent year *Kharif*-2022) was received from DAC, Govt. of India for 20 varieties of 6 forage crops *viz.*, fodder maize, fodder pearl millet, fodder cowpea, fodder Gaur, Hedge Lucerne and Sewan Grass. The total indent for breeder seed production was 78.10g.

The indent was allotted to Twelve SAUS/ICAR/NGO institutes. Among the quantity allotted for different forage crops, maximum was for forage maize (60.20q) followed by cowpea (15.90 q), pearl millet (1.55 q), fodder Guar (0.25 q), Hedge Lucerne (0.10q) and Sewan Grass (0.10q).

The final Breeder Seed Production report (BSP-IV) received from different seed producing centres revealed that the overall breeder seed production was higher or equal to indent in all the crops except fodder Guar.

Variety wise scenario indicates that in Forage Maize, 04 varieties were indented and report from 08 centers indicate that production was surplus or equal in all four varieties African Tall, Pratap Makka Chari-6, TSFM-15-5 and J-1006. Thus in maize, the production was more or equal to indented quantity in all 4 varieties. Total production was 81.48 g as against the indent of 60.20 g making a surplus of 21.28 g (35.34%).

In Forage pearl millet, indent was received for 6 varieties which were allocated to 5 centers. Production was surplus in GAFB-4, Raj Bajra-1, BAIF Bajra-1, FBC-16, PCB-165 whereas it met the target in HC-20. Thus in pearl millet, production was equal or more in all 6 varieties as compared to indented quantity. Total production was 7.65g as against the indent of 1.55 g thereby making a surplus of 6.10 g (393.55%).

In Forage cowpea, indent was received for 7 varieties which were allocated to 7 centers. Production was surplus in EC-4216, MFC-09-1, CL-367, UPC 628, UPC 8705, whereas it met the target in TNFC-0926. The production was deficit in Bundel Lobia-2, where the crop was reported to be damaged due to heavy rain. Seed was also produced for another notified variety MFC-08-14. Thus in cowpea the production was more or equal in 6 varieties whereas it was deficit in only one variety as compared to indented quantity. UAS Bengaluru reported production of 2.00 q seed of cowpea variety MFC-08-14 which was not indented. Total production was 22.75q as against the indent of 15.90q, thereby making a surplus of 6.85 q (43.08%).

In case of Sewan grass, indent of 0.10q was received for one variety RLS-11-50. Production by SKRAU, Bikaner was 11.00 q thereby making a surplus of 10.90q (10900%).In case of fodder guar, indent of 0.25q was received of one variety Bundel Guar-3. Production was nil as crop was reported to be damaged due to heavy rain. In case of hedge Lucerne, indent of 0.10 q was received for one variety TDN 1308 which was produced by TNAU, Coimbatore. ICAR-IGFRI Jhansi also reported production 0.20q seed of Guinea grass variety PGG 518 which was not indented.

Thus variety wise scenario indicates that production was equal or more in 18 varieties and deficit in 2 varieties as compared to indented quantity.

The overall breeder seed production in forage crops was 123.18q as against the indent of 78.10q indicating that surplus production was 123.08q or 45.08q (57.72%) higher than the indented quantity.

Table BSP 1: Centre wise Breeder Seed Production (q) during Kharif-2021

[Indent Kharif 2022]

SN	Producing centre/ State	Variety	Сгор	DAC indent	Actual Allocation	Actual Production	Production Surplus / Deficit (-)
Maha	rashtra						
1.	BAIF, Uralikanchan	AFRICAN TALL COMPOSITE	Fodder Maize	38.50	10.00	12.00	2.00
		EC-4216	Fodder Cowpea	7.20	3.20	3.60	0.40
		BAIF Bajra-1	Fodder Pearl millet	0.65	0.65	5.00	4.35
2.	MPKV, Rahuri	AFRICAN TALL COMPOSITE	Fodder Maize	38.50	22.00	29.00	7.00
		EC-4216	Fodder Cowpea	7.20	2.00	4.50	2.50
Punja							
3.	PAU, Ludhiana	J-1006	Fodder Maize	13.95	13.95	15.00	1.05
		FBC 16	Fodder Pearl millet	0.34	0.34	0.40	0.06
		PCB 165	Fodder Pearl millet	0.02	0.02	0.05	0.03
		CL-367	Fodder cowpea	0.20	0.20	0.30	0.10
		PGG 518	Guinea Grass	0.0	0.0	0.20	0.20
Rajas	sthan						
4.	MPUAT, Udaipur	PratapMakka Chari-6	Fodder Maize	5.50	5.50	7.50	2.00
5.	SKRAU,	Raj Bajra-1 (RRB)	Fodder Pearl Millet	0.30	0.30	1.00	0.70
	Bikaner	RLSB 11-50	Sewan Grass	0.10	0.10	11.00	10.90
Uttar	Pradesh				•		
6.	ICAR-IGFRI, Jhansi	AFRICAN TALL COMPOSITE	Fodder Maize	38.50	6.50	***	***
		EC-4216	Fodder cowpea	7.20	2.00	3.50	1.50
		Bundel Lobia - 2	Fodder cowpea	3.00	3.00	0.75	(-) 2.25#
		Bundel Guar -3 (IGFRI 1019-1)	Fodder Guar	0.25	0.25	0.00	(-)0.25#
Teler	igana	<u> </u>		ı	1		1
7.	PJTSAU, Hyderabad	TSFM 15-5	Fodder Maize	2.25	2.25	2.25	-
Karna		•			ı	•	•
8.	UAS (B) ZARS	MFC -09-1	Fodder cowpea	2.00	2.00	3.60	1.60
	Mandya	MFC-08-14	Fodder cowpea	0.0	0.0	2.00	2.00
		African Tall	Fodder Maize	0.00	0.00	9.00	9.00
Harya	ana	7		1 0.00	1 0.00	1 0.00	1 0.00
9.	CCS HAU, Hisar	HC-20 (HMP 9102)	Fodder Pearl millet	0.20	0.20	0.20	
Uttar	akhand		•		•	•	•
10.	GBPUAT,	UPC 628	Fodder cowpea	0.50	0.50	1.00	0.50
	Pantnagar	UPC 8705	Fodder cowpea	0.50	0.50	1.00	0.50
Tami	Nadu	•			•	•	•
11.	TNAU,	TNFC 926	Fodder cowpea	2.50	2.50	2.50	-
	Coimbatore	TDN 1308	Hedge Lucerne	0.10	0.10	0.10	-
Guja	at	•			•	•	•
12.	AAU, Anand	Gujarat Anand Forage Bajra 4 (GAFB 4)	Fodder Pearl Millet	0.04	0.04	1.00	0.96
13	CSK HPKV, Palampur	African Tall	Fodder Maize	0.0	0.0	6.73	6.73
			Grand Total	78.10	78.10	123.18	45.08

^{***=} Grown in Rabi 2021-22, data will be available by May 2022

= Crop loss due to heavy rain.

Table BSP 2:Variety-wise Breeder Seed Production (q) during Kharif-2021

[Indent Kharif 2022]

Crop	S N	Variety	Produced by	Year of Notification	DAC indent	Allocat ion As	Actual Producti	Production Surplus (+) /
						per BSP-1	on (q)	Deficit (-)
Forage	1	TSFM 15-5	PJTSAU, Hyderabad	2019	2.25	2.25	2.25	-
Maize	2	PratapMakka Chari-6	MPUAT, Udaipur	2009	5.50	5.50	7.50	2.00
	3	J-1006	PAU, Ludhiana	1992	13.95	13.95	15.00	1.05
	4	AFRICAN TALL	MPKV, Rahuri	1983	38.50	22.00	29.00	7.00
		COMPOSITE	IGFRI Jhansi			6.50	***	
			BAIF, Uralikanchan			10.00	12.00	2.00
			CSKHPKV, Palampur		0.00	0.00	6.73	6.73
			UAS Bangalore		0.00	0.00	9.00	9.00
				Total	60.20	60.20	81.48	(+) 21.28
Forage Pearl Millet	5	Gujarat Anand Forage Bajra 4 (GAFB 4)	AAU, Anand	2019	0.04	0.04	1.00	0.96
	6	Raj Bajra-1 (RRB)	SKRAU, Bikaner	2018	0.30	0.30	1.00	0.70
	7	FBC 16	PAU, Ludhiana	2016	0.34	0.34	0.40	0.06
	8	BAIF Bajra-1	BAIF, Uralikanchan	2010	0.65	0.65	5.00	4.35
	9	PCB 165	PAU, Ludhiana		0.02	0.02	0.05	0.03
	10	HC-20 (HMP 9102)	CCS HAU, Hisar		0.20	0.20	0.20	-
		1 (Total	1.55	1.55	7.65	(+) 6.10
Forage Cowpea	11	MFC -09-1	UAS (B) ZARS Mandya	2016	2.00	2.00	3.60	1.60
	12	CL-367	PAU, Ludhiana	2006	0.20	0.20	0.30	0.10
	13	EC-4216	ICAR-IGFRI, Jhansi	1978	7.20	2.00	3.50	1.50
			BAIF, Uralikanchan			3.20	3.60	0.40
			MPKV, Rahuri			2.00	4.50	2.50
	14	Bundel Lobia-2	ICAR-IGFRI, Jhansi		3.00	3.00	0.75	(-) 2.25*
	15	TNFC 926	TNAU, Coimbatore	2017	2.50	2.50	2.50	-
	16	UPC 628	GBPUAT, Pantnagar	2010	0.50	0.50	1.00	0.50
	17	UPC 8705	GBPUAT, Pantnagar	1996	0.50	0.50	1.00	0.50
	18	MFC-08-14	UAS ZARS, Mandya		0.00	0.00	2.00	2.00
				Total	15.90	15.90	22.75	(+) 6.85
Sewan	19	RLSB 11-50	SKRAU, Bikaner	2016	0.10	0.10	11.00	10.90
Grass			,	Total	0.10	0.10	11.00	
Hedge	20	TDN 1308	TNAU, Coimbatore	2019	0.10	0.10	0.10	-
Lucerne		1		Total	0.10	0.10	0.10	-
Fodder	21	Bundel Guar -3	ICAR-IGFRI, Jhansi	1999	0.25	0.25	0.00*	(-) 0.25
Guar		(IGFRI 1019-1)	ionicioi iti, mansi					,
	-	T DOO 540	I BALL I III	Total	0.25	0.25	0.00*	(-) 0.25
Guinea	22	PGG-518	PAU, Ludhiana		0.00	0.00	0.20	0.20
Grass				Total	0.00	0.00	0.20	0.20
	<u> </u>			Grand total	78.10	78.10	123.18	(+) 45.08
				total		1		. , ,

^{*} Crop loss due to heavy rain

National (DAC) indent for forage crops Breeder Seed Production (BSP-1) Year of indent: Kharif-2023 Year of Production: Kh

Year of Production: Kharif-2022

Crop: Fodder Cowpea

SN	Variety	Year of	Center	DAC	Allocation	Indenter (q)
		Release		indent (q)	(q)	
1	Vijaya (APFC-10-1)	2016	PJTSAU, Hyderabad	0.80	0.80	NDDB (0.80)
2	Bundel lobia - 4 (IL-1177)	2015	ICAR-IGFRI, Jhansi	0.60	0.60	NDDB (0.60)
3	Bundel Lobia-2	1994	ICAR-IGFRI, Jhansi	2.50	2.50	DADH (2.50)
4	UPC-8705	1996	GBPUAT, Pantnagar	1.00	1.00	NDDB (1.00)
5	EC-4216	1978	BAIF, Uralikanchan	6.10	3.00	DADF (5.00) NSC
			MPKV, Rahuri		3.10	(0.10), UP (1.00)
6	CL-367	2006	PAU, Ludhiana	0.20	0.20	PB (0.20)
			Total	11.20	11.20	

Crop: Fodder Maize

SN	Variety	Year of Release	Center	DAC	Allocation	Indenter (q)
			10107 - 1	indent (q)	(q)	10100 (0.00)
1	CG Makka Chari-1	2021	IGKV, Raipur	2.00	2.00	KVSS (2.00)
2	J-1007	2021	PAU, Ludhiana	9.00	9.00	KVSS (2.00), NDDB
						(1.00), PB (6.00)
3	TSFM 15-5	2019	PJTSAU, Hyderabad	2.60	2.60	NDDB (1.30), KVSS
						(1.00), NSAI (0.30)
4	PratapMakka Chari-6	2009	MPUAT, Udaipur	2.00	2.00	NDDB (1.00), KVSS (1.00)
5	J-1006 + Fodder Maize	1992	PAU, Ludhiana	15.80	15.80	DADH (2.00), NDDB
	J 1006					(3.50), NSC (1.00), PB
						(6.30), KVSS (1.00), NSAI
						(2.00)
	AFRICAN TALL	1983	MPKV, Rahuri	18.36	12.36	DADH (6.00), NDDB
6	COMPOSITE		IGFRI Jhansi		6.00	(1.30), NSC (10.00), KK
						(0.06), KVSS (1.00)
			Total	49.76	49.76	

Crop: Rye Grass

S N	Variety	Year of Release	Center	DAC indent (q)	Allocation (q)	Indenter (q)
1	PBRG-2	2020	PAU, Ludhiana	1.00	1.00	KVSS (1.00)
2	Palam Rye Grass	2020	CSK HPKV, Palampur	1.00	1.00	KVSS (1.00)

Crop: Fodder Rice Bean (RED BEAN)

SN	Variety	Year of	Center	DAC indent	Allocation	Indenter (q)
		Release		(q)	(q)	
1	Bidhan Rice Bean-2 (KRB-4)	2005	BCKV, Kalyani	0.50	0.50	DADF (0.50)

Crop: Fodder Pearl Millet

SN	Variety	Year of	Center	DAC indent	Allocation (q)	Indenter (q)
		Release		(q)		
1	TSFB 15-8	2020	PJTSAU, Hyderabad		0.70	KVSS (0.50), NSAI (0.20)
2	TSFB 15-4	2019		1.20	1.20	KVSS (1.00), NSAI (0.20)
3	Moti Bajra (APFB-09-1)	2016		0.20	0.20	NSAI (0.20)
4	TSFB 17-8	2021]	0.50	0.50	KVSS (0.50)
5	TSFB 18-1	2021		0.50	0.50	KVSS (0.50)
6	GAFB 4	2019	AAU, Anand	1.60	1.60	NDDB (1.60)
7	BAIF Bajra-1	2010	BAIF, Uralikanchan	1.37	1.37	DADH (0.70), NDDB
						(0.50), NSAI (0.12), NSC
						(0.05)
8	FBC 16	2007	PAU, Ludhiana	0.44	0.44	NDDB (0.20), NSC (0.10),
						PB (0.04), NSAI (0.10)
9	HC-20 (HMP 9102)	2002	CCS HAU, Hisar	1.40	1.40	NDDB (1.40)
10	IGPM 5-2				-	NSAI (0.03)
11	Raj Bajra-1 (RRB)	2018	SKRAU, Bikaner	0.15	0.15	RAJ (0.15)
			Total	8.06	8.06	

Specials Trials

K-21-AST-5: Screening of high biomass maize lines for silage potential

[(Table Reference: K-21-AST-5(a) to (i)]

Locations (6): PAU, Ludhiana, NDDB, Anand, PJTSAU, Hyderabad, IGKV, Raipur, South campus Mirzapur BHU, and BCKV, Kalyani

The growth of dairy sector primarily depends upon the availability of nutritious fodder. Maize is one of the most nutritious non-legume green fodders. It is quick growing, yields high biomass, highly palatable and free from any antinutritional components. It contains sufficient quantities of protein and minerals and possesses high digestibility as compared to other non-legume fodders. It contains high concentrations of soluble sugars in the green stage, which makes it most fit for preservation as silage.

Keeping above points in view a trial was initiated at six locations during Kharif 2021 to evaluate five high biomass yielding lines for agronomic traits as well as evaluation of silage quality. A field and lab trial was conducted at. The objective of the study was toscreen high biomass maize lines / released cultivars for silage potential and assess fermentation characteristics and nutritional quality of silage of these maize lines. The five maize lines namely African tall, J-1006, TSFM 15-5 (PJTSAU) J 1007 (state release from PAU), KDFM – 5 (state release from SKUAST- K). Additionally three lines- V₆: DKC9141, V₇: DKC9144 and V₈: Elite 751 and one line - V₉: MFM-18-27 was evaluated at Raipur and Ludhiana centres. The high biomass germplasm lines were screened at milk, dough and dent stages. Observations on agronomic parameters, Plant Quality parameters as well Silage quality parameters were recorded. The Planting was done in plots in plots of for each variety using standard agronomic practice for forage production. Silage was prepared from maize harvested at three different stages; (milk, dough and dent stages). Accordingly harvesting was done three times from each variety. Harvesting each time was done from different lines of each variety and not as multicut. Silage to be made from harvested material using standard practice. Three to five kg capacity bags were used to make silage. The results indicated that among the varieties remarkable variation in biomass yields was not observed. However J-1006 produced higher yields than rest of the lines. The fodder harvesting at dough stage produced higher green fodder but harvesting at dent stage recorded higher dry matter yields. The dry matter content important parameters for silage making, but this also did not vary significantly among varieties. However, dry matter content was highest at dent stage and varied in range of 30.7 to 31.9%. The crop took 75-84 days to reach milk stage, 84-90 days to reach dough stage and 88 to 98 days to dent stage. The total soluble sugar in maize plant varied in narrow range. Highest TSS was noted during dough stage. The maximum crude protein content in plant was noted at milk stage followed by dough, then dent stage. The ADF and NDF content in plant increased with stage of harvest. KDFM-1 recorded significantly lower ADF & NDF content & higher CP content. The pH, which is primary indicator of silage quantity decreased significantly with advancement in stage of harvest. Among varieties no significant variation was observed in pH content of silage. Crude protein content in silage was higher in silage prepared from maize cut milk stage and reduced as cutting stage progressed. Varietal difference was narrow. The soluble sugar in silage was highest in silage prepared from fodder cut at dough stage than other two stages.

The dry matter content in silage increased with stage of harvest, maximum being at dent stage. The varietal difference was in narrow range. The ADF and NDF content in silage decreased with advancement of cutting stage. The lab analysis indicated no variation on Butyric and Acetic acid content in silage either due to silage or variety reasons. The Lactic acid content did not follow any clear trend. TSFM-15-5 and J-1007 recorded higher lactic acid (5.92 & 5.79%) respectively, at milk stage, whereas, African Tall and J-1006 recorded higher Lactic acid in silage at dough stage (4.48 & 5.64 %) respectively. Total ash content varied in range of 10.94 to 14.73 but did not represent any clear trend either due to variety or harvest stage.

Table K-21-AST-5(a): Green and Dry Fodder Yield of high biomass lines at milk, dough and dent stages

				rage Yiel	d (q/ha)				Dry		/ield (q/ha	a)	
Varieties			N	lilk Stage						Milk S	tage		
varieties	NDDB	Rai-	Kal-	Ludh-	Mirza	Hydera	Mean	NDDB	Rai-	Kal-	Ludh-	Hyder	Mean
		pur	yani	iana	pur	bad			pur	yani	iana	abad	
V ₁	331.5	323	245.4	458.3	280	370	334.7	62.0	69.1	40.7	108.2	90.0	74.0
V ₂	338.3	343	320.6	479.2	270	341	348.7	60.4	72.0	68.3	101.2	84.0	77.2
V ₃	308.3	366.3	241.2	334.2	302.5	376	321.4	62.1	79.1	38.6	76.4	83.0	67.8
V ₄	306.5	316.4	294.8	534.7	235	358	340.9	63.0	65.8	55.1	98.5	81.0	72.7
V ₅	328.3	399.6	305.3	375.2	292.5	362	343.8	63.9	78.3	61.4	67.8	85.0	71.3
V ₆		373.0						62.0	69.1	40.7	108.2	90.0	74.0
V ₇		466.2							97.0				
V ₈		283.1							62.3				
V ₉				444.8		345.0					87.2	77.0	
	Dough Stage							Dough Stage					
V ₁	364.4	386.3	268.2	388.9	350.6	426	364.1	95.2	98.9	55.0	122.6	131.0	100.5
V ₂	385.8	349.7	342.5	435.2	335.3	396	374.1	88.4	87.4	78.1	140.5	121.0	103.1
V ₃	343.3	379.6	258.3	221.6	383.8	439	337.6	95.8	102.5	48.8	71.5	137.0	91.1
V ₄	349.3	366.3	315.8	444.2	300.3	418	365.7	95.8	102.6	67.9	119.6	125.0	102.2
V ₅	347	366.3	322.4	324.1	356.8	405	353.6	92.1	84.2	69.6	103.7	116.0	93.1
V ₆		409.6						95.2	98.9	55.0	122.6	131.0	100.5
V ₇		472.9							111.6				
V ₈		389.6							89.6				
V ₉				351.8		409.0					110.2	111.0	
			D	ent Stage						Dent S	Stage		
V ₁	222.2	359.6	291.6	333.9		409	323.3	80.9	110.0	92.1	115.3	129.0	105.5
V_2	244.8	363	370.1	324.1		378	336.0	85.2	100.9	127.7	117.4	119.0	110.0
V ₃	257.5	366.3	284.7	319.4		412	328.0	66.0	110.6	80.3	107.7	132.0	99.3
V ₄	253.9	359.6	348.2	449.1		405	363.2	66.8	104.3	113.5	132.0	127.0	108.7
V ₅	270	363	353.8	212.9		397	319.3	74.3	105.3	117.5	71.9	125.0	98.8
V ₆		399.6						80.9	110.0	92.1	115.3	129.0	105.5
V ₇		416.3							119.0				
V ₈		383.0							101.1				
V ₉				370.4		386.0					123.3	118.0	

V₁: African Tall; V₂: J-1006; V₃: TSFM 15-5; V₄: J-1007; V₅: KDFM-1; V₆: DKC9141; V⁊: DKC9144; V௧: Elite 751; Vȝ: MFM-18-27

Table K-21-AST-5(b): Dry matter content and plant height (cm) of high biomass lines

			DM (%)					Plai	nt Height	(cm)		
Varieties			Milk St	age						Milk Stag	е		
varieties	NDDB	Rai-	Kal-	Ludh-	Hydera	Mean	NDDB	Rai-	Kal-	Ludh-	Mirza	Hyder	Mean
		pur	yani	iana	bad			pur	yani	iana	pur	abad	
V_1	19.0	21.4	16.6	21.1	24.2	20.5	293	288	147	195	130	263	219
V_2	18.4	21.0	21.3	18.4	24.6	20.7	263	360	165	177	123	217	217
V_3	20.7	21.6	16.0	22.9	22.1	20.7	281	260	142	194	133	278	215
V ₄	20.2	20.8	18.7	23.6	22.5	21.2	247	306	149	189	109	242	207
V ₅	18.5	19.6	20.1	18.1	23.5	20.0	252	273	151	176	123	254	205
V ₆		22.4						304					
V ₇		20.8						285					
V ₈		22.0						328					
V ₉				19.6	22.3					182.5		263.0	
			Dough (D	ough Sta			
V_1	26.3	25.6	20.5	26.9	30.8	26.0	362	176	196	148	234	301	244
V_2	24.9	25.0	22.8	32.3	30.6	27.1	300	198	177	131	214	232	216
V ₃	26.9	27.0	18.9	32.1	31.2	27.2	331	155	194	148	221	306	233
V_4	27.2	28.0	21.5	31.5	29.8	27.6	269	181	189	144	208	261	215
V ₅	25.4	23.0	21.6	32.0	28.6	26.1	281	186	176	140	204	285	216
V ₆		22.8					328						
V_7		23.6					259						
V_8		23.0					269						
V ₉				31.3	27.1				183.1			302.0	
			Dent S							Dent Stag	е		
V_1	30.0	30.6	31.6	29.4	31.6	30.6	306	191	197	243		280	243
V_2	29.3	27.8	34.5	36.2	31.4	31.8	372	208	178	250		225	247
V ₃	29.5	30.2	28.2	33.5	32.0	30.7	252	176	193	228		288	227
V ₄	31.8	29.0	32.6	34.6	31.3	31.9	308	195	189	236		253	236
V_5	31.6	29.0	33.2	33.8	31.4	31.8	248	199	177	219		267	222
V ₆		26.2					313						
V ₇		28.6					316						
V ₈		26.4					314						
V ₉				33.3	30.5				181.9			283.0	

Table K-21-AST-5(c): Number of Leaves and Leaf Length of high biomass lines at different stages

	No. of Leaves Variet Milk Stage									L	eaf Lengt	h		
Variet				lilk Stage							Milk Stage			
ies	NDDB	Rai-	Kal-	Ludh-	Mirza	Hydera	Mean	NDDB	Rai-	Kal-	Ludh-	Mirza	Hyder	Mean
		pur	yani	iana	pur	bad			pur	yani	iana	pur	abad	
V_1	12.5	10.6	11.5	8.0	13.8	14.3	11.8	105.8	66.6	70.0	72.5	61.5	105.9	80.4
V ₂	13.1	10.4	12.8	9.5	13.8	12.3	12.0	102.4	70.0	86.0	95.0	54.5	90.2	83.0
V ₃	13.3	9.8	10.7	6.0	14.5	15.0	11.6	110.2	68.3	69.0	64.5	69.0	115.6	82.8
V ₄	13.0	9.4	11.6	9.0	11.0	13.7	11.3	101.9	70.0	77.0	97.5	52.3	99.5	83.0
V ₅	12.8	11.0	12.2	8.5	13.3	15.0	12.1	98.0	62.0	82.0	83.5	58.5	112.8	82.8
V ₆		8.8							79.9					
V ₇		9.2							65.7					
V ₈		9.6							73.2					
V ₉				6.0		14.7					73.0		106.8	
			Dough	Stage						D	ough Stag	ge		
V ₁	12.8	8.8	12.4	7.8	11.8	11.0	10.8	108.9	77.9	73.6	69.5	96.4	85.3	
V ₂	12.6	9.6	14.2	9.3	10.5	10.3	11.1	106.7	72.8	96.3	58.5	70.9	81.0	
V ₃	12.5	8.6	11.6	5.8	12.5	11.7	10.5	103.8	70.2	75.2	75.5	98.9	84.7	
V ₄	13.4	9.2	12.7	8.7	9.0	11.3	10.7	109.3	72.0	90.2	56.0	80.4	81.6	
V_5	12.8	10.0	13.2	8.1	11.5	9.7	10.9	104.7	70.0	93.5	66.0	79.6	82.8	
V ₆		10.0							73.2					
V ₇		9.2							67.6					
V ₈		9.2							69.1					
V ₉				5.9		10.0						91.8		
			Dent S								Dent Stag	е		
V ₁	11.2	8.6	12.8	7.4		9.3	9.9	103.0	74.2	75.4			92.8	86.4
V ₂	12.0	9.2	14.5	9.0		8.7	10.7	101.2	71.0	98.6			68.6	84.9
V ₃	11.7	8.4	11.8	5.4		9.3	9.3	97.7	71.0	78.3			89.7	84.2
V_4	11.7	9.0	12.9	7.6		9.3	10.1	96.3	72.2	91.1			73.5	83.3
V ₅	11.3	9.2	13.5	7.8		9.0	10.2	99.0	69.8	94.3			72.4	83.9
V ₆		7.6							69.2					
V ₇		8.2							63.8					
V ₈		9.0							70.9					
V ₉				5.7		9.3							65.2	

Table K-21-AST-5(d): Leaf breath and Nitrogen content in Plant and Silage of high biomass lines at different stages

			Leaf	breath (c	m)			n content (%) n plant	Nitrogen content in Silage	
Varieties			Mi	ilk Stage					lk Stage	Milk Stage
	NDDB	Rai-	Kal-	Ludh-	Mirza	Hydera	Mean	Raipur	Hyderabad	Raipur
		pur	yani	iana	pur	bad			-	
V_1	8.5	7.1	6.7	7.0	6.5	7.3	7.2	1.00	1.12	0.99
V_2	9.4	6.9	8.6	6.5	6.1	7.8	7.6	1.05	1.33	0.99
V ₃	8.7	7.0	6.0	6.5	6.9	8.0	7.2	1.12	1.28	0.97
V ₄	9.1	6.8	6.8	9.0	5.0	9.8	7.8	1.27	1.19	0.96
V ₅	9.4	6.6	8.0	9.3	5.9	9.9	8.2	1.37	1.19	1.16
V ₆		6.8						1.17		1.01
V ₇		7.1						0.92		0.99
V ₈		6.9						0.93		0.97
V ₉				7.5		9.5			1.12	
			Dou	ugh Stage	<u> </u>			Dou	gh Stage	Dough Stage
V ₁	8.6	7.8	7.3		6.6	8.6	7.8	0.90	1.07	0.92
V ₂	9.5	6.7	8.4		6.3	6.6	7.5	0.96	1.21	0.90
V ₃	8.8	6.9	7.1		7.0	7.8	7.5	1.04	1.17	0.99
V ₄	9.6	6.9	7.5		5.1	7.6	7.3	1.16	1.14	0.98
V ₅	9.6	6.8	8.2		6.1	8.2	7.8	1.00	1.12	1.16
V ₆		6.5						0.94		0.99
V ₇		7.2						0.93		0.91
V ₈		6.8						0.92		1.07
V ₉					8.0				1.05	
			De	nt Stage	ı	u		De	nt Stage	Dent Stage
V ₁	8.2	8.3	7.5			6.8	7.7	0.79	0.80	0.77
V ₂	8.5	6.8	8.6			6.3	7.6	0.82	1.05	0.84
V ₃	8.5	6.8	7.2			7.0	7.4	0.80	0.98	0.82
V ₄	8.4	6.4	7.7			7.3	7.5	0.79	0.96	0.73
V ₅	8.6	6.6	8.3			7.6	7.8	0.77	0.84	0.69
V ₆		6.5						0.79		0.77
V ₇		7.0						0.85		0.80
V ₈		6.6						0.89		0.75
V ₉						7.2			0.95	

Table K-21-AST-5(e): Crude protein and total soluble sugar content in Plant of high biomass lines at different stages

	CP (%) in Plant Milk Stage								Total	Soluble S	ugar conten	it (%) in P	lant
Varieties			Mi	lk Stage							Milk Stage		
varieties	NDDB	Rai-	Kal-	Ludh-	Mirza	Hydera	Mean		NDDB	Rai-	Ludh-	Hyder	Mean
		pur	yani	iana	pur	bad				pur	iana	abad	
V ₁	10.6	6.3	15.8	8.3	7.26	7.0	9.2		6.63	7.40	6.97	7.80	7.20
V ₂	8.8	6.6	17.1	7.6	7.78	8.3	9.4		6.57	6.90	5.43	7.60	6.63
V ₃	8.7	7.0	14.9	8.6	10.14	8.0	9.6		6.77	7.40	6.91	7.70	7.20
V ₄	9.1	7.9	16.4	8.9	6.80	7.4	9.4		6.63	7.40	7.71	7.00	7.19
V ₅	9.4	8.5	16.5	9.1	9.45	7.4	10.1		6.67	6.70	7.77	6.90	7.01
V ₆		7.3								8.1	7.14		
V ₇		5.7								8.7			
V ₈		5.8								8.6			
V ₉				7.6		7.00						6.80	
			Dough Sta							D	ough Stage		
V ₁	7.8	5.6	11.3	7.2	7.50	6.7	7.7		6.93	8.30	8.40	7.60	7.81
V ₂	8.1	6.0	14.1	7.2	7.87	7.6	8.5		6.50	7.60	7.43	7.20	7.18
V ₃	8.1	6.5	10.3	6.9	7.15	7.3	7.7		6.90	7.60	8.00	7.90	7.60
V ₄	8.4	7.2	11.9	7.0	6.87	7.2	8.1		6.50	7.90	7.26	7.20	7.22
V ₅	8.0	6.3	12.9	7.0	8.35	7.0	8.3		6.63	8.30	7.54	7.50	7.49
V ₆		5.9								8.3	6.97	7.20	
V ₇		5.8								8.6			
V ₈		5.7								8.4			
V ₉				7.1		6.56							
			Dent Stag	ge							Dent Stage		
V ₁	7.1	4.9	10.5	5.	8	5.0	6.7		7.57	6.60	7.71	6.90	7.20
V ₂	7.3	5.1	11.2	5.	4	6.6	7.1		7.40	6.70	8.57	7.00	7.42
V ₃	7.8	5.0	9.3	5.	5	6.1	6.7		7.33	6.70	8.00	6.70	7.18
V ₄	7.7	4.9	10.8	5.	9	6.0	7.1		7.50	6.60	10.00	6.80	7.73
V ₅	6.6	4.8	11.1	4.	9	5.3	6.5		7.37	6.00	8.86	6.20	7.11
V ₆		5.0								7.5	8.00		
V ₇		5.3								8.4			
V ₈		5.6								8.1			
V ₉				5.	5	5.95						6.50	

Table K-21-AST-5(f): Quality parameters in Plant of high biomass lines at different stages

Varieties			ntent (%)) in Plant je				tent (%) i lilk Stage		CP yields (q/ha) Milk Stage	content	le Fat in plant %) Stage	
	NDDB	Rai- pur	Ludh- iana	Hydera bad	Mean	NDDB	Rai- pur	Ludh- iana	Hyder abad	Mean	Kal- yani	NDDB	Mirza- pur
V ₁	37.3	35.5	42.9	42.4	39.5	65.0	51.6	62.8	64.4	61.0	6.50	1.00	1.08
V ₂	39.0	54.5	37.4	48.7	44.9	67.4	67.0	63.5	62.2	65.0	11.70	1.00	1.09
V ₃	39.1	54.3	36.2	46.2	44.0	69.0	67.0	65.8	60.3	65.5	5.80	1.00	1.78
V ₄	39.8	43.4	37.1	43.7	41.0	69.9	64.2	64.3	64.3	65.7	9.10	1.00	0.83
V ₅	39.0	32.2	39.0	41.2	37.9	65.7	62.5	66.3	62.5	64.3	10.20	1.00	0.82
V ₆		35.00					61.00						
V ₇		38.00					62.00						
V ₈		42.00					64.50						
V ₉			38.6	48.2				65.5	67.2				
		D	ough Sta	ige			Do	ugh Stag	е	I	D	ough Stag	je
V ₁	41.7	55.1	35.1	48.9	45.2	69.0	67.2	60.7	68.2	66.3	6.20	1.00	1.54
V ₂	38.6	31.5	32.4	50.1	38.2	68.6	68.0	57.9	64.7	64.8	11.10	1.00	1.84
V ₃	41.1	36.1	36.1	48.9	40.6	68.8	60.1	58.8	61.4	62.3	5.10	1.00	1.39
V ₄	37.8	31.0	34.6	45.6	37.3	67.5	57.2	57.9	68.2	62.7	8.10	1.00	1.35
V ₅	38.5	31.3	35.1	45.2	37.5	67.5	59.0	62.1	64.7	63.3	9.00	1.00	1.69
V ₆		42.00					64.20						
V ₇		38.00					61.20						
V ₈		42.00					60.20						
V ₉			34.1	46.7				60.0	68.4				
			Dent Stag	ge			D	ent Stage				Dent Stage	•
V ₁	34.5	32.0	39.0	46.5	38.0	61.2	50.2	63.0	70.1	61.1	9.67	1.79	
V ₂	33.0	46.1	39.5	51.2	42.5	59.2	68.8	63.7	67.8	64.9	14.30	1.38	
V ₃	33.0	28.0	36.8	50.4	37.1	59.6	48.0	68.3	64.2	60.0	7.47	2.16	
V ₄	31.1	40.6	37.5	46.8	39.0	58.9	60.2	65.2	68.0	63.1	12.26	1.52	
V ₅	34.3	29.3	40.8	44.8	37.3	59.8	50.5	66.3	62.9	59.9	13.04	1.00	
V ₆		32.00					64.20						
V ₇		41.00					61.50						
V ₈		32.00					58.50						
V ₉			39.7	50.2				66.5	69.9				

Table K-21-AST-5(g): pH and crude protein, crude fibre and Butyric acid content in silage made from fodder harvested at different stages

Varieties			pH of s					CP cor		Crude fibre content (%) in plant	Butyric acid (%)		
			Milk S	tage					Milk Sta	ge		Milk Stage	Milk Stage
	NDDB	Rai-	Kal-	Ludh-	Mirza	Mean	NDDB	Rai-	Kal-	Ludh-	Mean	Kalyani	NDDB
		pur	yani	iana	pur			pur	yani	iana			
V_1	3.83	3.83	3.90	3.80	3.91	3.85	10.02	6.20	11.90	7.00	8.78	16.5	0.10
V ₂	3.53	3.81	3.80	3.70	4.12	3.79	9.25	6.20	12.80	7.60	8.96	19.5	0.10
V ₃	3.33	3.76	4.00	3.70	4.07	3.77	8.50	6.00	14.90	7.90	9.33	16.0	0.10
V_4	3.43	3.77	3.70	3.50	3.92	3.66	9.31	6.00	14.20	8.10	9.40	17.5	0.10
V_5	3.37	3.83	3.80	3.70	4.06	3.75	9.37	7.20	10.40	8.10	8.77	18.0	0.10
V ₆		3.76						6.3					
V ₇		3.72						6.2					
V ₈		3.57						6.0					
V ₉				3.6						7.1			
			Dough						Oough Sta				
V ₁	3.57	3.85	3.70	3.50	4.21	3.77	8.23	5.80	9.65	6.10	7.45	38.5	0.10
V_2	3.47	3.48	3.60	3.50	4.13	3.64	9.01	5.60	8.08	6.50	7.30	42.0	0.10
V ₃	3.50	3.50	3.80	3.70	4.18	3.74	8.26	6.20	7.58	5.90	6.99	37.5	0.10
V ₄	3.53	3.86	3.60	3.50	4.09	3.72	8.41	6.10	8.69	6.40	7.40	39.0	0.10
V ₅	3.60	3.51	3.90	3.50	4.04	3.71	9.11	7.20	8.55	6.40	7.82	41.0	0.10
V ₆		3.73						6.2					
V ₇		3.74						5.7					
V ₈		3.69						6.7					
V ₉				3.6						5.5			
			Dent S						Dent Sta				
V ₁	3.53	3.54	3.60	3.70		3.59	7.41	4.80	8.16	5.20	6.39	36.5	0.10
V ₂	3.53	3.53	3.40	3.50		3.49	7.48	5.30	5.31	5.40	5.87	41.0	0.10
V ₃	3.53	3.51	3.70	3.90		3.66	7.57	5.10	6.62	5.20	6.12	32.0	0.10
V ₄	3.53	3.60	3.50	3.50		3.53	7.74	4.60	6.23	5.40	5.99	36.5	0.10
V ₅	3.63	3.65	3.80	4.00		3.77	7.57	4.30	7.03	5.40	6.08	38.0	0.10
V ₆		3.78						4.8					
V ₇		3.51						5.0					
V ₈		3.40						4.7					
V ₉				3.6				1		4.6	1		

Table K-21-AST-5(h): Dry matter, total soluble sugar and IVDMD (%) in Silage

		Soluble S		IVDMD (%)in Silage		Dry	Matter conte	ent (%) in Si	lage	
Varieties		Milk Stage	•	Milk Stage			Milk S	Stage		
	Rai-	Ludh-	Mean	Ludh-	NDDB	Rai-	Kal-	Ludh-	Mirza-	Mean
	pur	iana		iana		pur	yani	iana	pur	
V_1	6.50	3.60	5.05	52.20	17.74	20.00	16.20	24.10	27.36	21.08
V_2	6.20	3.50	4.85	52.00	17.51	19.00	20.80	25.00	33.94	23.25
V ₃	6.50	5.00	5.75	50.10	18.19	19.80	16.00	26.30	31.70	22.40
V ₄	6.50	3.50	5.00	53.60	18.85	20.00	18.40	27.60	32.86	23.54
V ₅	6.30	3.60	4.95	51.80	18.53	19.00	18.80	23.30	28.24	21.57
V ₆	6.2					21.6				
V ₇	6.2					19.6				
V ₈	6.5					21.0				
V ₉		3.5						23.2		
	Do	ough Stag	ge	Dough Stage		•	Dough	Stage		
V ₁	7.20	5.40	6.30	52.60	24.67	24.00	19.80	30.50	27.41	25.28
V ₂	7.00	5.60	6.30	49.40	25.08	24.20	22.10	35.00	38.27	28.93
V ₃	7.50	5.90	6.70	50.40	23.35	25.60	18.20	34.60	35.40	27.43
V ₄	6.00	5.00	5.50	50.60	22.90	26.00	21.00	33.00	34.39	27.46
V ₅	7.00	3.80	5.40	48.10	25.09	22.20	20.80	33.70	35.19	27.40
V ₆	7.2					22.0				
V ₇	7.5					22.0				
V ₈	7.5					21.8				
V ₉		5.4						33.4		
		Dent Stage	е	Dent Stage			Dent S	Stage		
V ₁	6.00	4.20	5.10	49.70	26.04	29.00	22.80	3	5.30	28.29
V ₂	6.00	5.20	5.60	48.50	30.26	26.00	24.60		2.10	30.74
V ₃	6.50	5.00	5.75	48.90	26.95	28.00	21.40	3	6.20	28.14
V ₄	6.80	4.40	5.60	51.60	31.87	27.00	22.30	3:	5.30	29.12
V ₅	5.80	5.40	5.60	46.20	32.00	27.00	21.80	3	7.60	29.60
V ₆	6.5					24.0				
V ₇	7.5					26.6				
V ₈	7.8					25.6				
V ₉		4.5						3	34.8	

Table K-21-AST-5(i): Growth and quality parameters in plant and silage

Varieties	Crude Fat content (%) in	Lactic Acid (%)	Acetic Acid (%)	Total Ash (%) in Silage	Weight of green leaves/	Weight of green Stem/p	Weight of green cobs/pl ant (g)	ADF content in Silage						
Variotioo	silage				plant(g)	lant (g)								
	NDDD	NDDD		Milk Stag		NDDD	NDDD		NDDD	.		Stage		
	NDDB	NDDB	NDDB	NDDB	NDDB	NDDB	NDDB		NDDB	Rai-	Kal-	Ludh-	Mirza	Mean
M.	1.47	3.70	0.23	12.98	0.18	0.61	0.25		41.2	pur 42.8	yani 36.5	iana 42.9	pur 54.5	43.6
V ₁	1.47	3.70	0.23	10.94	0.18	0.61	0.25		38.6	48.5	37.4	37.4	54.5	43.6
V ₃	1.17	5.92	0.10	10.95	0.76	0.48	0.25		38.3	49.8	35.4	36.2	47.9	41.5
V ₄	1.12	5.79	0.10	15.30	0.19	0.40	0.32		38.6	45.5	37.8	37.1	44.9	40.8
V ₅	1.28	3.95	0.11	13.34	0.18	0.45	0.38		38.2	43.7	36.7	39.0	50.2	41.6
V ₆										37.22				
V ₇										42.92				
V ₈										44.95		00.0		
V ₉			_	L							<u> </u>	38.6		<u> </u>
				ough Sta								h Stage	1	
V ₁	1.62	4.48	0.10	12.57	0.18	0.66	0.08		41.4	43.5	30.5	35.1	53.8	40.9
V_2	2.07	5.64	0.10	9.89	0.20	0.47	0.45		33.0	52.3	32.2	32.4	52.4	40.5
V ₃	1.13	3.60	0.10	13.05	0.15	0.55	0.22		43.3	49.1	28.4	36.1	57.2	42.8
V ₄	2.18	2.94	0.11	10.97	0.22	0.40	0.48		35.9	35.1	30.1	34.6	49.7	37.1
V_5	1.80	4.50	0.10	10.36	0.19	0.48	0.49		36.2	40.3	29.7	35.1	53.2	38.9
V ₆										47.70				
V ₇										41.36				
V ₈										45.30				
V ₉												34.1		
				Dent Stag	e							t Stage		
V_1	1.18	3.96	0.10	9.66	0.13	0.47	0.08		36.0	46.2	26.2	39.0		36.9
V ₂	1.13	4.32	0.10	14.73	0.12	0.37	0.31		36.6	50.5	28.7	39.5		38.8
V ₃	1.12	2.54	0.10	9.30	0.12	0.33	0.16		35.3	35.2	24.2	36.8		32.9
V ₄	1.50	2.33	0.10	11.81	0.12	0.31	0.22		34.0	33.3	27.6	37.5		33.1
V_5	1.29	3.28	0.10	10.55	0.12	0.40	0.29		32.6	49.7	26.5	40.8		37.4
V ₆										35.71				
V ₇										46.69				
V ₈										38.84				
V ₉												39.7		

Table K-21-AST-5(j) Ash content in plant of high biomass lines at different stages

			Ash content (%) in plant				
Varieties			Milk Stage				
varieties	NDDB	Ludh-	Mirza-	Mean			
		iana	pur				
V_1	10.79	5.20	6.40	7.46			
V_2	11.01	5.30	7.44	7.92			
V ₃	11.77	5.20	8.34	8.44			
V ₄	14.12	6.20	5.93	8.75			
V ₅	18.82	5.50	8.08	10.80			
V ₉		5.7					
			Dough Stage				
V ₁	11.01	4.70	9.83	8.51			
V ₂	11.01	5.60	8.83	8.48			
V ₃	12.58	4.40	7.78	8.25			
V ₄	10.66	5.20	6.97	7.61			
V ₅	9.40	4.80	6.19	6.80			
V ₉		4.7					
			Dent Stage				
V ₁	9.73	5	5.30	7.52			
V ₂	11.55	6	5.50	9.03			
V ₃	12.40	5	5.80	9.10			
V ₄	9.17	5	5.90	7.54			
V ₅	10.14	5	5.10	7.62			
V ₉		,	5.1				

PPT-33: Germplasm evaluation programme against diseases and insect-pests in forages

Objective: To identify potential resistance donors for their further use in forage breeding programme.

Details of crop, disease/insect-pest and place of screening

Crop	Disease	Place		
Maize	Maydis leaf blight	Ludhiana		
	Turcicum leaf blight	Palampur, Mandya		
	Downy mildew, Rust	Mandya		
	Fall armyworm	Coimbatore, Rahuri		
Cowpea	Root rot/wilt	Palampur, Bhubaneshwar		
	Defoliators, Yellow mosaic virus	Coimbatore, Rahuri		
Pearl millet	Blast	#Jaipur, Dhule, Ludhiana		

[#]AICRP-Pearl millet centre Jaipur, Dhule

Design: Augmented design

Crop: Maize

Number of entries/lines: 108

Paired rows for each germplasm in 3 m rows.

> 30 cm row to row and 10 cm plant to plant distance.

Fertilizers: 80:40 kg/ha (N:P) 40:40 kg/ha (N:P) basal+ 40 N after 30 days

Crop: Cowpea

Number of entries/lines: 68

Paired rows for each germplasm in 3 m rows.

> 30 cm row to row and 10 cm plant to plant distance.

> Fertilizers: 20:40 kg/ha (N:P) basal

Crop: Pearl millet

Number of entries/lines: 29

> Paired rows for each germplasm in 3 m rows.

> 30 cm row to row and 10 cm plant to plant distance.

Fertilizers: 40:20 kg/ha (N:P) basal

Results

Forage Maize

In maize, a total of 108 germplasm lines were tested against different diseases and insect-pest at various locations. At Rahuri and Coimbatore, germplasm lines were screened for fall armyworm resistance. At Ludhiana, germplasm lines were screened for maydis leaf blight resistance. At Mandya, germplasm lines were screened for turcicum leaf blight and sorghum downy mildew resistance.

At Rahuri, 58 germplasm lines were found susceptible, 5 lines were resistant and 27 lines were moderately resistant to Fall armyworm in maize (Table PPT 33a). Resistant lines were SRG 10, SRG 12, BAIF-121, BAIF-122 and African Tall.

At Coimbatore, 76 lines were categorized as resistant and 21 lines were moderately susceptible against fall armyworm. The entries which recorded lowest score (1) were MAI-316, MFM-20-350-4, BAIF-119, BAIF-122, BAIF-206, BAIF-211, BAIF-240 and IC-334973(Table PPT 33a).

At Ludhiana, 2 lines were found moderately resistant and rest were susceptible to maydis leaf blight moderately resistant lines were SRG 25 and MFM-18-2 (w) (Table PPT 33a).

At Mandya, all the lines were found susceptible to downy mildew disease. Against Turcicum leaf blight,56 genotypes found resistant. Moderately resistant reaction was shown by 41 genotypes. 9 genotypes showed moderately susceptible reaction and 1 genotype (IC-335194) showed susceptible reaction to TLB (Table PPT 33a).

Against fall armyworm, SRG 10, BAIF-121, BAIF-122 and African Tall were found resistant at both the tested locations (Rahuri and Coimbatore) and thus can serve as effective source of resistance against fall armyworm.

Against Maydis leaf blight and Turcicum leaf blight, SRG 25 and MFM-18-2 (w) were found moderately resistant (against Maydis leaf blight) and resistant (against Turcicum leaf blight) at Ludhiana and Mandya respectively and thus can serve as effective source of resistance against both these diseases.

Table PPT 33a: Reaction of different germplasm lines against different diseases and insect-pests

Entries	Reac	tion to	Fall armyw	orm		Reaction to Maydis leaf blight (MLB), Turcicum leaf blight (TLB) and						
			mage		sorghum downy mildew (SDM)							
	Rahuri		Coimbatore		Ludhiana		Mandya					
	Rating	Reac	Rating	React	MLB severity	Reac	SDM incidence	React	TLB(disease	Reacti		
	score	tion	score	ion	(%)	tion	(%)	ion	score)	on		
SRG 1	7.25	S	3	R	82.1	S	100	S	3.0	R		
SRG 2	7.56	S	5	MS	87.0	S	100	S	4.0	MR		
SRG 3	5.06	MR	3	R	81.0	S	100	S	2.5	R		
SRG 4	7.4	S	5	MS	71.3	MS	100	S	3.0	R		
SRG 5	8.43	S	5	MS	76.2	MS	100	S	2.5	R		
SRG 6	8.18	S	5	MS	80.0	MS	86.7	S	2.0	R		
SRG 7	8.49	S	5	MS	74.5	MS	100	S	4.0	MR		
SRG 8	7.57	S	5	MS	73.5	MS	100	S	2.5	R		
SRG 9	7.34	S	4	R	61.0	MS	100	S	3.5	MR		
SRG 10	3.46	R	5	R	67.3	MS	100	S	3.5	MR		
SRG 11	NG		NG		65.5	MS	100	S	3.0	R		
SRG 12	4.08	R	5	MS	71.0	MS	100	S	3.0	R		
SRG 13	6.52	MR	3	R	60.0	MS	100	S	4.0	MR		
SRG 14	6.35	MR	3	R	64.5	MS	100	S	3.5	MR		
SRG 15	5	MR	3	R	61.3	MS	76.9	S	2.0	R		
SRG16	7.42	MR	4	R	71.0	MS	100	S	5.0	MR		
SRG 17	8.43	S	2	R	67.3	MS	100	S	5.0	MR		
SRG 18	8.44	S	3	R	68.8	MS	100	S	4.0	MR		

Entries	Reac		Fall armyw amage	orm	Reaction to Maydis leaf blight (MLB), Turcicum leaf blight (T sorghum downy mildew (SDM)					LB) and
	Rah	uri	Coimba	tore	Ludhiana	3		Mar	ndya	
	Rating	Reac	Rating	React	MLB severity	Reac	SDM incidence	React	TLB (disease	Reacti
	score	tion	score	ion	(%)	tion	(%)	ion	score)	on
SRG 19	8.36	S	2	R	81.6	S	100	S	5.0	MR
SRG 20	6.79	MR	3	R	83.3	S	100	S	5.0	MR
SRG 21	7.56	S	4	R	87.7	S	100	S	5.0	MR
SRG 22	7.44	S	5	R	61.3	MS	100	S	2.5	R
SRG 23	7.36	S	2	R	62.4	MS	92.3	S	5.0	MR
SRG 24	7.42	S	3	R	67.8	MS	100	S	4.0	MR
SRG 25	NG		NG	- '`	41.0	MR	100	S	2.0	R
MFM-18-2 (w)	8.13	S	3	R	47.2	MR	100	S	2.0	R
MFM-18-3	7.37	S	5	MS	63.0	MS	100	S	3.5	MR
MFM-18-4	7.61	S	3	R	73.0	MS	100	S	5.0	MR
MFM-18-7	7.71	S	4	R	74.3	MS	100	S	3.0	R
MFM-18-27	8.44	S	2	R	77.0	MS	92.3	S	4.0	MR
MAI-12	6.76	MR	4	R	61.8	MS	100	S	2.0	R
MAI-194	NG	IVII	3	R	64.2	MS	100	S	3.0	R
MAI-316	6.58	MR	1	R	71.2	MS	100	S	3.0	R
MFM-20-319-2 (o)	8.35	S	5	MS	69.0	MS	100	S	3.5	MR
MFM-20-322-2	8.23	S	5	MS	65.6	MS	100	S	2.0	R
MFM-20-339	7.34	S	3	R	64.1	MS	93.3	S	4.0	MR
MFM-20-347-2	7.78	S	3	R	61.2	MS	100	S	4.0	MR
MFM-20-350-4	8.25	S	1	R	63.4	MS	100	S	3.0	R
MFM-20-356-1	8.22	S	3	R	67.7	MS	100	S	4.0	MR
MAI-7	NG		3	R	72.3	MS	100	S	2.5	R
MAI-8	5.03	MR	5	MS	75.3	MS	100	S	3.0	R
MAI-10	7.8	S	3	R	76.6	MS	100	S	3.0	R
CML-451	7.56	S	3	R	70.0	MS	100	S	NG	NG
MAI-105	7.67	S	4	R	69.7	MS	60	S	3.0	R
MAI-217	7.56	S	4	R	68.0	MS	100	S	2.0	R
MAI-215	7.8	S	4	R	63.5	MS	84.6	S	3.5	MR
MAI-264	8.45	S	3	R	64.0	MS	100	S	3.0	R
J-1006	8.54	S	4	R	70.0	MS	100	S	3.0	R
JC-1465	7.81	S	4	R	72.3	MS	100	S	3.0	R
JC-1463-1	8.44	S	4	R	76.5	MS	100	S	2.0	R
JC-1455-1	8.56	S	5	MS	67.8	MS	100	S	2.0	R
JC-4	8.38	S	5	MS	66.5	MS	100	S	4.0	MR
PFM-10	8.54	S	2	R	63.2	MS	100	S	5.0	MR
PFM-11	8.57	S	3	R	61.5	MS	100	S	3.0	R
PFM-12	8.55	S	5	MS	60.0	MS	100	S	3.5	MR
PML-81	7.56	S	5	MS	63.5	MS	100	S	4.0	MR
PML-243	8.35	S	4	R	64.2	MS	100	S	3.0	R
PML-368	7.69	S	3	R	65.2	MS	100	S	2.0	R
PML-1230	7.57	S	3	R	67.1	MS	100	S	4.0	MR
CML-269	5.95	MR	3	R	66.8	MS	100	S	2.5	R
JH-16224	7.56	S	3	R	70.0	MS	100	S	2.5	R
JH-17026	7.75	S	3	R	69.3	MS	100	S	3.0	R
2201647	7.8	S	3	R	68.1	MS	100	S	2.5	R
2201666 (2201646)	7.56	S	3	R	66.2	MS	93.3	S	3.0	R
2201371	7.69	S	4	R	65.0	MS	100	S	2.5	R
2201372	7.73	S	4	R	65.7	MS	100	S	3.5	MR

Entries	Reac		Fall armyw amage	orm	Reaction to Ma		eaf blight (MLB), rghum downy m			LB) and
	Rah	uri	Coimba	tore	Ludhiana	3		Mar	ndya	
	Rating	Reac	Rating	React	MLB severity	Reac	SDM incidence	React	TLB (disease	Reacti
	score	tion	score	ion	(%)	tion	(%)	ion	score)	on
2201373	7.71	S	3	R	64.3	MS	100	S	2.5	R
JC-12	5	MR	2	R	62.1	MS	100	S	2.5	R
BAIF-107	5.78	MR	2	R	76.0	MS	100	S	2.5	R
BAIF-119	NG		1	R	77.0	MS	100	S	3.0	R
BAIF-121	3.55	R	3	R	75.8	MS	100	S	7.0	MS
BAIF-122	3.91	R	1	R	74.3	MS	92.9	S	4.0	MR
BAIF-128	6.06	MR	2	R	70.7	MS	100	S	4.0	MR
BAIF-137	NG		2	R	62.3	MS	91.7	S	3.0	R
BAIF-206	7.56	S	1	R	61.2	MS	100	S	1.5	R
BAIF-211	6.29	MR	1	R	71.0	MS	100	S	2.5	R
BAIF-238A	NG		2	R	75.5	MS	100	S	5.5	MS
BAIF-240	7.57	S	1	R	64.0	MS	90	S	2.5	R
BAIF-245	7.73	S	2	R	73.0	MS	100	S	6.0	MS
BAIF-255	5.89	MR	4	R	74.5	MS	100	S	3.0	R
BAIF-256	6.81	MR	3	R	65.4	MS	93.3	S	4.5	MR
BAIF-257	6.28	MR	3	R	67.0	MS	90	S	3.5	MR
BAIF-269	6.43	MR	2	R	77.0	MS	100	S	2.5	R
BAIF-270	6.68	MR	2	R	70.5	MS	100	S	1.5	R
BAIF-281	5.75	MR	NG	-	71.6	MS	100	S	2.5	R
BAIF-283	5.89	MR	5	MS	73.7	MS	100	S	3.5	MR
BAIF-296	5.77	MR	5	MS	61.3	MS	100	S	3.5	MR
BAIF-298	6.71	MR	3	R	67.0	MS	100	S	2.0	R
BAIF-299	NG		3	R	68.1	MS	100	S	2.5	R
BAIF-303	7.7	S	5	MS	78.9	MS	100	S	3.5	MR
BAIF-306	NG		5	MS	73.6	MS	100	S	4.0	MR
BAIF-311	5.77	MR	3	R	69.4	MS	93.3	S	2.5	R
BAIF-312	5.64	MR	3	R	61.2	MS	100	S	6.0	MS
IC-335194	6.79	MR	2	R	66.1	MS	100	S	8.0	S
IC-334973	7.7	S	1	R	76.0	MS	100	S	7.0	MS
IC-335185	8.35	S	2	R	73.2	MS	73.3	S	2.5	R
IC-335789	NG				74.5	MS	100	S	6.0	MS
IC-334969	NG				70.0	MS	100	S	3.0	R
IC-334974	NG				64.0	MS	100	S	6.0	MS
IC-334966	7.7	S	2	R	65.2	MS	100	S	5.0	MR
IC-338984	NG				NG	MS	100	S	3.5	MR
IC-334965	6.01	MR	2	R	74.0	MS	100	S	3.5	MR
TSFM-15-5	5.39	MR	2	R	76.0	MS	100	S	2.0	R
Hyderabad local				İ						
collection							92.9	S		
(Mandya)	NG				NG				4.0	MR
IC-334981	NG			İ	NG		100	S	7.0	MS
IC-335188	NG				NG		100	S	6.0	MS
IC-338984	NG			İ	NG		100	S	2.5	R
African Tall (NC)	3.97	R	2	R	70.0	S	100	S	3.5	MR
NC: No gorgina						4. N/C			bla. C. Cuasa	411.1

NG: No germination; R: Resistant; MR: Moderately resistant; MS: Moderately susceptible; S: Susceptible

Forage Pearl millet

At Ludhiana, 29 lines were evaluated under artificial inoculation conditions against leaf blast and all the lines showed susceptible disease reactions to leaf blast (Table PPT 33c).

Table PPT 33c: Reaction of germplasm lines to blast

	Ludhiar	na
Germplasm lines	Blast severity (disease score)	Reaction
AFB-23	7	S
AFB-24	7	S
AFB-25	7	S
AFB-26	7	S
AFB-27	7	S
AFB-28	7	S
AFB-29	7	S
AFB-30	7	S
AFB-31	7	S
AFB-32	7	S
AFB-33	7	S
AFB-34	7	S
AFB-35	8	HS
AFB-36	7	S
AFB-37	7	S
AFB-45	7	S
AFB-49	7	S
AFB-51	7	S
AFB-53	7	S
AFB-54	7	S
GAFB-4 (Variety)	7	S
GFB-1 (Variety)	7	S
GFB-3 (Variety)	7	S
RBB-1	7	S
Giant Bajra	7	S
TSFB-1610	7	S
TSFB-15-4	7	S
TSFB-15-8	7	S
Moti Bajra	7	S

S: Susceptible; HS: Highly Susceptible

Forage Cowpea

In cowpea, a total of 68 germplasm lines were tested against different diseases and insect-pest at various locations. At Rahuri, germplasm lines were screened for yellow mosaic virus and defoliators resistance. At Coimbatore, germplasm lines were screened for yellow mosaic virus resistance. At Bhubaneswar, germplasm lines were screened for root rot resistance.

At Rahuri, in forage cowpea 56 lines were immune and 12 germplasm lines were found resistant to cowpea defoliators. Against Yellow Mosaic Virus (YMV), 6 germplasm lines were found moderately susceptible, 16 lines resistant, 40 lines highly resistant and 5 lines were moderately resistant.

At Coimbatore, among the 68 lines evaluated against Yellow mosaic virus, 20 lines were found to be Immune, 11 lines were resistant, 21 lines were moderately resistant, 14 lines were moderately susceptible and one line was found to be susceptible.

At Bhubaneswar,Out of 68 cowpea germplasm lines tested against root rot, 11 lines expressed immunity to root rot, 37 lines were resistant, 9 lines were moderately resistant, 4 lines were moderately susceptible, 1 line was susceptible and 5 lines were highly susceptible to root rot disease of cowpea.

Among the 68 germplasm lines, MFC-20-3, MFC-20-7, UPC-804, CL-334, N-311, IFC-9304, IFC-8401, CS-98, FD-74, FD-928, FD-1151, FD-1161, FD-1273, FD-1277, CO-5, CO-(FC)-8, TNFC-0926, CO-9, IFC-24094 and BL-1 exhibited resistance against yellow mosaic virus, defoliators, root rot disease and thus can be used as an effective source of resistance against multiple diseases and insect-pest in cowpea.

Table PPT 33a: Reaction of different cowpea germplasm lines to diseases and insect-pests

Entries			Reaction of ge	rmplasm lin	es to diseases	and insect-p	pests	
		Ra	huri	-	Coimba	tore	Bhubane	swar
	YMV	Reaction	Defoliators	Reaction	YMV rating	Reaction	Root rot	Reaction
	rating		rating		score		incidence (%)	
	score		score					
MFC-08-14	1.3	R	1.0	Immune	2	MR	NG	
MFC-16-8	0	HR	2.1	R	2	MR	40	MS
MFC-09-3	1	R	1.0	Immune	3	MS	15	MR
KBC-2	0	HR	1.0	Immune	2	MR	4	R
KM-5	0	HR	1.0	Immune	3	MS	45	S
MFC-18-2	0	HR	1.0	Immune	3	MS	10	R
MFC-18-4	1.41	R	1.0	Immune	2	MR	3	R
MFC-18-5	2.21	MR	1.0	Immune	2	MR	2	R
MFC-18-8	0	HR	2.2	R	2	MR	13	MR
MFC-18-10	1.61	R	2.0	R	2	MR	16	MR
MFC-20-3	1.32	R	2.0	R	1	R	3	R
MFC-20-5	1.63	R	2.2	R	3	MS	3	R
MFC-20-7	1.23	R	2.0	R	1	R	8	R
MFC-20-8	1.44	R	2.2	R	3	MS	3	R
MFC-20-11	1.13	R	2.0	R	2	MR	7	R
MFC-20-20	1.53	R	2.3	R	2	MR	2	R
MFC-20-22	1.3	R	2.2	R	5	HS	6	R
MFC-20-25	0	HR	2.0	R	1	R	22	MS
MFC-20-26	0	HR	1.0	Immune	5	HS	13	MR
MFC-20-27	1.44	R	2.2	R	4	S	2	R
MFC-20-28	0	HR	1.0	Immune	3	MS	78	HS
MFC-20-29	0	HR	1.0	Immune	2	MR	12	MR

Entries	Reaction of germplasm lines to diseases and insect-pests										
		Ra	huri		Coimba	itore	Bhubane	swar			
	YMV	Reaction	Defoliators	Reaction	YMV rating	Reaction	Root rot	Reaction			
	rating		rating		score		incidence (%)				
	score		score								
MFC-20-30	0	HR	1.0	Immune	2	MR	6	R			
UPC-287	0	HR	1.0	Immune	3	MS	11	MR			
UPC-607	0	HR	1.0	Immune	2	MR	15	MR			
UPC-618	0	HR	1.0	Immune	3	MS	2	R			
UPC-621	3.12	MS	1.0	Immune	2	MR	8	R			
UPC-622	2.05	MR	1.0	Immune	2	MR	0	I			
UPC-625	0	HR	1.0	Immune	3	MS	2	R			
UPC-628	2.81	MR	1.0	Immune	2	MR	0				
UPC-4200	3.01	MS	1.0	Immune	2	MR	4	R			
UPC-5286	2.07	MR	1.0	Immune	2	MR	3	R			
UPC-5287	1.66	R	1.0	Immune	3	MS	0				
UPC-8705	3.06	MS	1.0	Immune	2	MR	2	R			
UPC-9202	2.84	MR	1.0	Immune	2	MR	2	R			
UPC-801	0	HR	1.0	Immune	3	MS	2	R			
UPC-802	3.72	MS	1.0	Immune	2	MR	0	ı			
UPC-803	3.56	MS	1.0	Immune	2	MR	4	R			
UPC-804	0	HR	1.0	Immune	0	HR	8	R			
UPC-805	3.1	MS	1.0	Immune	0	HR	6	R			
UPC-951	0	HR	1.0	Immune	0	HR	6	R			
CL-334	1.7	R	1.0	Immune	0	HR	0				
N-311	0	HR	1.0	Immune	1	R	0	ı			
IFC-9304	0	HR	1.0	Immune	1	R	0	İ			
IFC-8401	0	HR	1.0	Immune	0	HR	3	R			
CS-98	0	HR	1.0	Immune	0	HR	4	R			
FD-74	0	HR	1.0	Immune	0	HR	2	R			
FD-739	0	HR	1.0	Immune	0	HR	70	HS			
FD-801	0	HR	1.0	Immune	0	HR	16	MR			
FD-826	0	HR	1.0	Immune	0	HR	75	HS			
FD-927	0	HR	1.0	Immune	0	HR	12	MR			
FD-928	0	HR	1.0	Immune	0	HR	8	R			
FD-1052	0	HR	1.0	Immune	0	HR	35	MS			
FD-1151	0	HR	1.0	Immune	0	HR	6	R			
FD-1161	0	HR	1.0	Immune	1	R	8	R			
FD-1237	0	HR	1.0	Immune	1	R	72	HS			
FD-1259	0	HR	1.0	Immune	0	HR	30	MS			
FD-1269	0	HR	1.0	Immune	0	HR	75	HS			
FD-1273	0	HR	1.0	Immune	0	HR	10	R			
FD-1277	1.61	R	1.0	Immune	1	R	6	R			
CO-5	0	HR	1.0	Immune	1	R	8	R			
CO-(FC)-8	0	HR	1.0	Immune	1	R	0	I			
TNFC-0926	0	HR	1.0	Immune	0	HR	0	i			
CO-9	0	HR	1.0	Immune	0	HR	0	i			
IFC-24094	0	HR	1.0	Immune	0	HR	6	R			
BL-1	0	HR	1.0	Immune	1	R	4	R			
Vijayar	0	HR	1.0	Immune	3	MS	2	R			
TSFC-20-06	1.9	R	1.0	Immune	3	MS	0	I I			
					-		Moderately susce	ntiblo:			

NG: No germination; I: Immune; HR: Highly Resistant; R: Resistant; MR: Moderately resistant; MS: Moderately susceptible; S: Susceptible; HS: Highly susceptible

FORAGE TECHNOLOGY DEMONSTRATIONS

To popularize the forage production technologies and make the farmers aware about various new fodder crop varieties, total of 627 FTD's were conducted by AICRP coordinating and co-operating centres during *Kharif* 2021 for the crops *viz.*, BN hybrid, sorghum (including multi cut and perennial), rice bean, fodder maize, pearl millet, setaria and guinea grass. Out of 627 FTD's, 215 were conducted on BN Hybrid, 30 on Rice bean, 125on Maize, 25 on forage sorghum, 90 on Pearl millet, 30 on Cowpea and 25 on Setaria grass and 25 on hedge Lucerne besides few on other fodder crops and intercropping systems. FTDs were conducted in the new villages to extend the adoption of technologies in large areas. No extra financial support was provided due to paucity of funds. The centres conducted FTDs out of their own resources and in convergence with other programmes.

FTDs allotted to different centres for conducting during Kharif 2021

Centre	BN	Rice	Maize	Pearl	Cowpea	Sorghum	Guinea	Setaria	Other	Total
	hybrid	bean		millet			grass			
Jorhat	10							5	Congo 5	20
Bhubaneswar	10			5	5					20
Kalyani	10	10	10							30
Ranchi	20	10	10				20			60
Ayodhya	10			10						20
Jabalpur	5	10	15	5						35
Anand	10			10						20
Urulikanchan	20			10	5					35
Bikaner				10			Lasiurus 2			22
							Cluster be	an 10		
Ludhiana	30									30
Hyderabad	25		20	15	5	Per. Sorgh1	0			95
-						Hedge Luce	erne 20			
Mandya	5				5		5	Maize +	cowpea 5	20
Palampur	20							20		40
Srinagar			40							40
Imphal	10		10			10				30
Raipur			10			10				20
Vellayani	20				5					25
Pantnagar			10	10						20
Coimbatore	10					5	Hedge Lı	icerne 5	•	20
Hisar				15	5		Teosinte 5			25
Total	215	30	125	90	30	25	25	25	62	627

Forage In-House Breeding Activities Kharif-2021

AICRP (FC&U), TNAU, Coimbatore

Forage Plant Genetic Resources

Germplasm explorations made: New germplasm explorations were made at The Nilgris and Erode districts of Tamil Nadu as per details below.

SN	Crop	Number of accessions	Location of Exploration
1.	Napier grass	2	Nilgris district, Tamil Nadu
2.	Desmanthus	12	Erode district, Tamil Nadu
Total		14	

Germplasm Maintenance: The details of the germplasm accessions maintained in different forage crops at Coimbatore centre are furnished below.

SN	Crop	Number of accessions
1.	Bajra	206
2.	Napier grass	56
3.	Guinea Grass	96
4.	Cenchrus sp	156
5.	Cowpea	150
	Total	664

Forage Genetic Improvement programme

I.BxN hybrid

Development of high water use efficient BN hybrids

Hybridization between identified fodder Bajra and Napier grass: Hybridization was made between seven Napier accessions as male parents and 25 elite pearl millet accessions from ICRISAT as female parents with identified special traits as detailed below.

Baj	Bajra accessions with special traits selected as parents						Napier accessions with special traits selected as parents			
SN	Accessions	Special	SN	Accessions	Special	SN	Accessions	Special Traits		
		Traits			Traits					
1.	GP 15069		16.	IP 11354		1.	FD 482	High WUE		
2.	GP 15072		17.	IP 20273		2.	FD 474			
3.	GP 15073	High	18.	IP 20338		3.	FD 434			
4.	GP 15074	GFY	19.	PT 5091		4.	FD 443			
5.	GP 16271		20.	PT 5365		5.	FD 465	High GFY and		
6.	GP 18219		21.	PT 5581	High L/S	6.	FD 464	profuse tillering		
7.	GP 15076	High	22.	PT 5588	ratio	7.	FD 432			
8.	GP 15953	tillering	23.	PT 5652						
9.	GP 15958		24.	PT 5682						
10.	GP 15988		25.	PT 5701/1						
11.	GP 16016									
12.	TNFB 9901									
13.	TNFB 9902									
14.	GP 16023									
15.	GP 16026									

Of hybridization attempted in these genotypes, seed set was successful in 15 cross combinations. Although attempt was made to cross all the four identified WUE Napier genotypes (FD 482, FD 474, FD 434, FD 443) with pearl millet accessions, hybridization was successful with only one WUE Napier genotype *viz.*, FD 482 because of lack of flowering synchronization of the other Napier genotypes with the pearl millet accessions.

Details of successful cross combinations

SN	Crosses	SN	Crosses	SN	Crosses
1.	GP 15074 x FD 482	6.	GP 15073 x FD 482	11.	PT 5091 x FD 482
2.	GP 15074 x FD 465	7.	GP 15073 x FD 464	12.	PT 5091 x FD 432
3.	GP 16016 x FD 482	8.	GP 15958 x FD 482	13.	TNFB 9902 xFD 482
4.	GP 16016 x FD 464	9.	GP 15958 x FD 464	14.	GP15074×432
5.	GP 16016 x FD 465	10.	GP 16023 x FD 482	15.	GP16016×432

Evaluation of BN hybrids for high WUE under Rain out Shelter: The above 15 F₁bajra Napier hybrids along with five checks (CO 3, CO (CN) 4, CO (BN) 5, CO 6 and TNCN 34) were planted in the rain out shelter on 15.09.2021 to study the water use efficiency of bajra Napier hybrids. Two water levels were imposed which were calculated based on the pan evaporation rate which include Irrigation water/ Cumulative Pan Evaporation at 0.8 and 0.6. The respective control which is IW/CPE at 1 is maintained outside the rainout shelter. Irrigation for the control was done once the cumulative pan evaporation (CPE) rate reaches 50 mm. Similarly for the water level at 0.8 irrigation was done when CPE reaches 62.5 mm while for 0.6 water level it is done at 83.3 mm of CPE. First harvest of green fodder yield is under progress.

Development of bajra napier hybrid grass for high green fodder yield

Clonal Nursery Evaluation: A total of 31 F₁ hybrids along with the check hybrids CO (BN) 5 and CO 6 were planted in RBD with two replications in clonal nursery during October 2020. Among the cultures, the culture TNCN 2020-23 recorded the highest green fodder yield of 397.34 t/ha followed by TNCN 2020-05 recorded 361.64t//ha/yr over seven consecutive cuts.

In another set of clonal nursery evaluation, a total of 29 F₁ Bajra Napier hybrids synthesized during Rabi 2021 were planted along with the check CO (BN) 5 and CO 6 in RBD with two replications on 04.10.2021. The crop has well established.

State Multi Location Trial in Bajra Napier hybrid grass

Performance of the bajra –**Napier hybrid clones under MLT (2019-21):** Multi Location Trials (MLTs) have been conducted at five locations of Tamil Nadu during 2019-20 to evaluate the performance of promising clones and checks *viz.*, TNCN 1901, TNCN 1902 and CO (BN) 5. In addition, during 2020-21, MLTs have been organized at eleven locations throughout the state to evaluate the performance Out of the three entries, TNCN 1902 had recorded highest green fodder yield of 38.56 t/ha/cut followed by TNCN 1901 recorded 35.31 t/ha/cut which is 12.43 and 8.94 percent yield increase over the check CO (BN) 5 respectively.

Performance of the bajra -Napier hybrid clones under MLT

Entw	Mea	n Green fodder yield	Percentage over	
Entry	2019-20	2020-21	Mean	CO(BN) 5
TNCN 1901	35.16	35.45	35.31	8.94
TNCN 1902	34.31	38.56	36.44	12.43
CO (BN) 5 (c)	31.15	33.66	32.41	-

As per the norms of the perennial trials, the bajra-napier MLTs will be organized for three consecutive years to ascertain the consistency in performance of entries. Therefore, the MLT of these entries are being continuously evaluated during 2021-22 in same/additional locations. The pooled data of three years will be considered for the promotion of entries to the on-farm trials during 2022-23.

II. Lucerne

Poly cross breeding programme: A total of eight parents namely Anand-2, Krishna, RL-88, CO 1, BAL 08-1, Anand-3, CO 4 and Kutchi were sown on 05.03.2021 in heptagon design. Upon completion of crossing, the poly-crossed seeds were collected and processing of seed is under progress.

Under state programme, a total of 93 poly-crossed hybrid progenies along with the check Lucerne varieties viz., CO 3 and CO 4 were sown on 06.01.2021 in the field no. E1 of new area farm and the crop has germinated well.

III. Fodder Cowpea

Seed multiplication of superior performing cowpea cultures: During *Kharif* 2021, two promising fodder cowpea cultures *viz.*, TNFC 1910 and TNFC1905 which were nominated for evaluation under AICRP FC&U – IVT were raised for seed multiplication. The seeds were harvested and processing is under progress.

During *Kharif* 2021, a total of 100 single plants from 20 crosses in F₃ progenies in fodder cowpea and the single plant progenies were selected and harvested.

IV. Fodder Maize

Development of high biomass yielding maize hybrids with fodder quality: Crossing block was raised during Rabi 2020-21 by using 11 lines and 8 testers in maize. The details of inbred lines used as parents for synthesis of single cross maize hybrids are furnished below.

Special traits of the inbreds utilized in the hybridization

SN	Inbred	Special Trait	SN	Inbred	Special Trait
1.	UMI 1200	High biomass	11.	N112	
2.	UMI 1221		12.	N 10-86	
3.	UMI 1230		13.	N 09-160-2	Late flowering
4.	UMI 1205		14.	N 66	
5.	UMI 1201		15.	N 123	
6.	UMI 1210		16.	N61	
7.	UMI 1220		17.	52021	
8.	UMI 1221		18.	52485	Medium duration
9.	African tall	Tallness	19.	UMI 112	
10.	TNFM 139-1	Earliness			

A total of 62 F₁ maize single cross hybrids along with the local check CO H (M) 8 were sown during Kharif 2021 in RBD with two replications. The crop was harvested at flowering stage and evaluated for green fodder yield. Among the hybrids evaluated, the F₁ hybrid TNFMH 25 recorded the green fodder yield of 77.10 t/ha is 42% yield increase over the check COH (M) 8. Performance of this cross will be evaluated over season along with the national check COH (M) 8 to exploit it further.

Details of cross combinations

SN	Cross combinations	SN	Cross combinations	SN	Cross combinations
1.	UMI 1200 × UMI 1221	22.	UMI 1205 × N 66	43.	UMI 1230 × UMI 1200
2.	UMI 1200 × UMI 1230	23.	UMI 1205 × N 10-86	44.	UMI 1230 × TNFM 139-1
3.	UMI 1200 × N 09-160-2	24.	UMI 1205 × African Tall	45.	UMI 1230 × N -09-160-2
4.	UMI 1200 × N 66	25.	UMI 1210 × UMI 1200	46.	N 123 × UMI 1200
5.	UMI 1200 × African tall	26.	UMI 1210 × UMI 1230	47.	N 123 × UMI 112
6.	UMI 1200 × TNFM 139-1	27.	UMI 1210 × UMI 112	48.	N 123 × UMI 1230
7.	UMI 1200 × N-10-86	28.	UMI 1210 × N 09-160-2	49.	52021 × N -09-160-2
8	UMI 1200 × N112	29.	UMI 1210 × N 66	50.	52021 × N 66
9.	UMI 1201 × 1200	30.	UMI 1210 × N 10-86	51.	52021 × TNFM 139-1
10.	UMI 1201 × UMI 1200	31.	UMI 1210 × African Tall	52.	52021 × UMI 112
11.	UMI 1201 × UMI 1230	32.	UMI 1210 × TNFM 139-1	53.	52021 × UMI 1200
12.	UMI 1201 × UMI 112	33.	UMI 1220 × UMI 1200	54.	52485 × UMI 1200
13.	UMI 1201 × N 09-160-2	34.	UMI 1220 × UMI 1230	55.	52485 × UMI 1230
14.	UMI 1201 × N 66	35.	UMI 1220 × UMI 112	56.	52485 × UMI 112
15.	UMI 1201 × N 10-86	36.	UMI 1220 × N 66	57.	52485 × N -09-160-2
16.	UMI 1201 × African Tall	37.	UMI 1220 × African Tall	58.	52485 × N66
17.	UMI 1201 × TNFM 139-1	38.	UMI 1220 × TNFM 139-1	59.	52485 × TNFM 139-1
18.	UMI 1205 × UMI 1200	39.	UMI 1221 × UMI 112	60.	N 61 × UMI 1230
19.	UMI 1205 × UMI 1230	40.	UMI 1221 × N 66	61.	N 61 × African Tall
20.	UMI 1205 × UMI 112	41.	UMI 1221 × N 10-86	62.	N 61 × UMI 112
21.	UMI 1205 × N 09-160-2	42.	UMI 1221 × African Tall		

AICRP (FC&U), BCKV, Kalyani

Gamma ray induced mutagenesis in Bidhan Rice Bean 1

To find out any morphological mutants in regards to forage quality (high protein or fibre), photo insensitivity, early flowering, bushy types (without the trailing habit) *etc* or any other agro-economic traits. Variants serving dual purpose character (seed + green forage) could be a good finding which may be of two types- (i) Green forage yielder after proper harvesting of seeds: in that case early flowering mutants will be selected; (ii) Green forage yielder before the harvesting of the seeds, here late flowering may be selected. M1, M2 & M3 generation is over. The selected plants from the M3 generation is be evaluated in the M4 generations for confirmed selection of desired mutants.

M4 generation: M4 Mutant- L1P6, L13P5, L1P1, L3P4, L6P1, L4P5, L7P1, L3P2, L4P3 and Control. eg. L4P5- dual purpose (higher GFY + seed yield), L7P1, L6P1, L4P3 and L13P5 are promising lines for higher GFY and CPY.

Germplasm maintained

• Rice bean: 250

• Coix: 3

• Forty (40) germplasm lines of ricebean were evaluated against two checks *viz.*, Bidhan ricebean 2 and Bidhan ricebean 3 as Large Scale Trial (LST) on production of fodder rice bean.

AICRP (FC&U), GBPUAT, PANTNAGAR

Cowpea germplasm evaluation: 105 germplasm lines comprising indigenous & exotic lines & improved genetic stocks have been planted in 2.0 m long rows spaced 1.0 m apart for the evaluation and maintenance. In late podding stage, due to heavy rain some of the lines didn't harvest.

Multiplication/Maintenance of improved Genetics stock/Released Varieties:Twenty-six improved lines including released varieties were planted in 15-20 rows of 30-meter-long plots each for seed increase to be utilized in the station evaluation and national coordinated trial, demonstration, FTDs at Various locations. Multiplication/increase of 32 plots of 32 improved lines/released varieties were undertaken during the Kharif 2021 season.

SN	Improved lines/varieties	SN	Improved lines/varieties	SN	Improved lines/varieties
1	UPC-2025	12	UPC-631	23	UPC-2004
2	UPC-2024	13	UPC-4200	24	UPC-2001
3	UPC-2023	14	UPC-8705	25	UPC-287
4	UPC-2010	15	UPC-9202	26	UPC-626
5	UPC-2007	16	UPC-622	27	UPC-621
6	UPC-2006	17	UPC-2028	28	UPC-607
7	UPC-2003	18	UPC-2027	29	UPC-625
8	UPC-2002	19	UPC-2026	30	UPC-804
9	Vegetable Selection	20	UPC-2009	31	UPC-628
10	UPC-5287	21	UPC-2008	32	UPC-5286
11	UPC-618	22	UPC-2005		

Evaluation of progenies: Total of ninety-six breeding lines including 08 F₁, 28 F₆, 39 F₇, and 21 F₁₁ progenies were planted in 5 m long double rowsspaced 75cm apart for the evaluation with respect to different characters as per the breeding objectives. Due to heavy rain in the late podding stage some of the lines didn't harvest.

S. No.	Progenies	Number of lines	S. No.	Progenies	Number of lines
1	F_1	8	3	F ₇	39
2	F ₆	28	4	F ₁₁	21

Fresh cross attempted:On the basis of visual observation regarding foliage biomass and disease resistance, following crosses have been made in forage cowpea during Kharif 2021

S. No.	Crosses made	S. No.	Crosses made
1	UPC-5286 x UPC-622	3	UPC-8705 x UPC-9202
2	UPC-622 x UPC-9202	4	UPC-622 x UPC- 5286

Breeder seed production: In Kharif 2021 the following amount of different varieties of cowpea have been produced against the indicated DAC indent:

SN	Variety	DAC indent (KG) (BSP I)	Actual production(KG) (BSP IV)
1	UPC-625	-	10
2	UPC- 4200	-	30
3	UPC-8705	50	70
4	UPC-628	50	70

Variety notified = 01: Forage Oat - UPO-10-2 (Pant Forage Oat 4)

AICRP (FC&U), PAU, Ludhiana

New crosses attempted

- **Pearl millet:** A total of 20 new forage hybrids and 3 composites were developed which will be evaluated in summer 2022.
- **Cowpea:**A total of 26 new crosses were synthesized by crossing lines selected on the basis of erectness, virus resistance, late flowering and high GFY.
- **Maize:** Four inbreds viz. VL 176258, VL 162590, PML 187 and PML 120 were selected for high biomass and good fodder quality and F1's among them were generated.
- **Bajra x Napier hybrids:** A new set of crosses is being attempted (about 20) using superior bajra forage lines as female and superior napier grass as male parents.

Breeding material maintained/handled/generated Pearl millet

- Maintenance and development of male sterile lines: 50
- Inbred lines (B&R) maintained: 250
- Fifty male sterile lines from all the seven different sources of male sterility

Male sterile lines being maintained / developed in different sources

Source	No. of MS lines	Source	No. of MS lines
A1	20	A2	3
A3	3	A4	15
A5	4	Gero	2
Vio	2	AG	1

Cowpea

• Breeding material consisting of F₁ Crosses (17), F₂ (12), F₃ (9) F4 (6), F5 (5) and F6 (3) was maintained.

Station trials conducted during Kharif 2021

Trial	Entries	Promising entries
Station trial of Bajra x Napier hybrid	16 + 4(C)	PBN 408, PBN 407, PBN 414, PBN 402
Station trial-Bajra	4+2 (C)	FBL 7, FBL 6, PCB 166, FBL 12
Cowpea Multilocation Trial- Ludhiana, Ballowal	10+2 (C)	PFC 42, PFC 44
Maize Multi location Trial- Ludhiana, Gurdaspur	10+2 (C)	PFM 12, PFM 18

Germplasm maintained

Crop	Number of accessions/Populations
Pearl millet- Inbreds	250
Pearl millet- CMS lines	50
Napier grass	30
Cowpea	221
Maize	38
Cluster bean	84
Total	673

Entries in AICRP (FC) trials and their status

Trial	entry	Remarks
VTNB-Perennial (2019)	PBN 402, PBN 407, PBN 408	Trial will continue up to <i>Kharif</i> 2022
IVTPM	FBL 6	Trial concluded
AVTPM-1	FBL 4, PHBF 5	Trial concluded
AVTM-1	PFM 13	Trial concluded
AVTM-2	PFM 12	Trial concluded

Varieties released at Central or State level (in last 6 years): 25

Crop	Variety	Year of release	State/Central release
Oats	OL 10	2014	State
	OL 1802	2016	CZ
	OL 1804	2016	NEZ
	OL 11	2017	State
	OL 1802-1	2017	NWZ
	OL 1760	2017	SZ
	OL 1769-1	2017	CZ
	OL 12	2018	State
	OL 1861	2019	All India (except HZ)
	OL 1869-1	2019	CZ
	OL 13	2020	State
	OL 14	2020	State
	OL 15	2021	State
	OL 1896	2021	NWZ
	OL 1876-2	2021	NEZ
	OL 1874-1	2021	SZ
Berseem	BL 43	2017	State
	BL 44	2021	State & NWZ
Ryegrass	PBRG 2	2020	NWZ & HZ
Sorghum	PSC 4	2015	State
Pearl millet	PCB 165	2020	State
Maize	J 1007	2020	State
Bajra Napier Hybrid	PBN 346	2016	State
	PBN 342	2017	NWZ, NEZ and SZ
	PBN 351	2019	CZ

AICRP (FC&U), RPCAU, Pusa

Forage Cowpea improvement programme

- Extensive crosses were made in forage cowpea.
- F₃'s of following crosses have been generated
 - o C543 × Bundel lobia-1
 - o PFC 12 × TSFC-16-1
 - o UPC 1701 × HFC-16-1
 - \circ UPC 628 \times C 217
- Nearly 250 genotypes of different fodder crops collected and are being maintained.
- Breeder seed production of Forage oat, Hybrid Napier and Guinea grass has been initiated.
- One station trial and one maintenance trial were conducted on forage cowpea in the last *Kharif* season.

AICRP (FC&U), SKUAST-K, Srinagar

Germplasm procurement

Crop	No. of Collections	Source
Maize	30	IIMR, Ludhiana, IGKV, Raipur
Cowpea	10	USDA
Sorghum	5	DSR, Hyderabad

Forage Maize

- The population crosses made during *Kharif*-2020 were advanced by random mating and also evaluated for various forage and quality traits during *kharif*-2021.
- Third cycle of random mating was completed during *kharif* season-2021. In addition to this various forage pools of maize were maintained by bulk/chain sibbing in white background.
- Six entries have been contributed to initial varietal trial (IVT) on forage maize and one entry KDFM-6 has been promoted to AVT-1 during 2021.
- Local land race collection showing promising in forage related traits have been collected and are maintained.
- 60 lines were advanced as a collaborative venture with AICRP-Maize Centre at Hyderabad

AICRP (FC&U), ANDUAT, AYODHYA

Germplasm collection, evaluation & maintenance

or inplasm concensity evaluation & maintenance					
Crop	Existing	New	Total	Source	
	accessions	Collections	acc.		
Forage Bajra	36	03	39	Barabanki, Lucknow and Ghajipur	
Forage cowpea	06	03	09	Barabanki	
BN Hybrids	02	10	12	IGFRI, Jhansi	
Range grasses/ legumes	02	22	24	IGFRI, Jhansi	

Breeding Programme in Forage Bajra: Ten new crosses were made during Kharif 2020

S.N.	Cross combinations	S.N.	Cross combinations
D.1.1.		D.1.4.	
1	NDFB 911 x AFB-4	6	NDFB 1803 x BAIF Bajra
2	NDFB 911 x AFB-3	7	NDFB 1506x AFB-4
3	NDFB 912 x BAIF Bajra	8	NDFB 939 x AFB-3
4	NDFB 939 x Giant Bajra	9	NDFB 939 x Giant Bajra
5	NDFB 938 x AFB-4	10	NDFB 1803x AFB-3

Segregating generations:

• $F_1 = 10$

• $F_2 = 07$

• $F_3 = 05$

• Advance lines= 08

 One station trial viz., VT Station on Forage Bajra was conducted. Fourteen genotypes were tested against two checks viz., NDFB-2 and NDFB-3

AICRP (FC&U), BAIF, Urulikanchan

Mandated crops: Maize, Pearl millet, Lucerne, B x N hybrid, Cenchrus and Stylosanthes

Breeding: During this season advancement of breeding material of B x N hybrid and fodder maize was undertaken.

1. B x N hybrid

Evaluation of B x N hybrids: Seeds of 15 crosses of Bajra and Napier grass were sown during *summer*-2021.Based on the phenotypic characters, 28 promising individual clumps were identified. A station trail was established in randomized block design to evaluate progenies of 28 clumps for green biomass yield and quality parameters along with checks BNH-10 and CO 5. The data was collected for first cutting.

2. Maize

- **a.** Crossing programme: Four new poly cross wereattempted using three parental lines in each cross as under:
 - 1. BAIF 242 x BAIF 102 x PratapMakka
 - 2. BAIF 242 x African Tall x PratapMakka
 - 3. BAIF 245 x African Tall x PratapMakka
 - 4. PratapMakka x BAIF 102 x African Tall
- **b. Evaluation of crosses:** F_1 progeny of following sixteen crosses of maize along with check African Tall was grown for evaluation. Bulk seed of ten crosses was obtained for further advancement programme.

SN	White grain colour		SN	Red Grain col	our		
1	BAIF- 235	X	BAIF-102	11	BAIF - 141	X	BAIF - 314
2	BAIF- 242	X	BAIF-102	12	BAIF - 265	X	BAIF - 314
3	BAIF- 245	X	BAIF-102	13	BAIF - 249	X	BAIF - 314
4	BAIF- 297	X	BAIF-102	14	BAIF - 112	X	BAIF - 314
5	PratapMakka -6	X	BAIF-102	15	BAIF - 226	X	BAIF - 314
6	BAIF- 235	X	PratapMakka -6	16	BAIF - 320	X	BAIF - 314
7	BAIF- 242	X	PratapMakka -6				
8	BAIF- 245	X	PratapMakka -6				
9	BAIF- 297	X	PratapMakka -6				
10	BAIF- 102	X	PratapMakka -6				

Advancement of progeny: F3 progenies of 72 IPS selected from following twelve crosses of maize were grown for evaluation of different fodder traits. Eighty four IPS were made from above progeny for further advancement.

SN	Cross		No. of	SN	Cross		No. of		
				IPS					IPS
1	PratapMakka	X	African Tall	13	9	BAIF-150	X	BAIF-295	04
2	BAIF-235	X	African Tall	11	10	BAIF-218	X	BAIF-295	07
3	BAIF-304	X	African Tall	04	11	BAIF-224	X	BAIF-295	05
4	BAIF-242	X	African Tall	07	12	BAIF-309	X	BAIF-295	04
5	BAIF-313	X	African Tall	04	13	BAIF-150	X	BAIF-295	03
6	BAIF-245	X	African Tall	06	14	BAIF-218	X	BAIF-295	07
7	BAIF-102	X	African Tall	03	15	BAIF-224	X	BAIF-295	05
8	BAIF-303	X	African Tall	04	16	BAIF-309	X	BAIF-295	04

AICRP (FC&U), CSKHPKV, Palampur

Germplasm addition

Crop	No. of collections	Source
Black spear grass (Heteropogon contortus)	6	Distt. Kangra (HP)
Scented grass (Chrysopogon gryllus)	4	Distt. Kangra (HP)

Germplasm holding

Crop	No. of collections
Setaria grass (Setaria anceps)	40
Black spear grass (Heteropogon contortus)	19
Scented grass (Chrysopogon gryllus)	17
Maize (Zea mays)	20

Promising Germplasm - Setaria grass

Traits	Entries
Leaf-stem ratio	S-9, S-18, S-20 and S-39
Tillers/plant	S-21
Low oxalates	S-6, S-7, S-10, S-13, S-17, S-18, S-20, S-30 and S-33

Breeding work Setaria grass

- Twelve clonal selections of Setaria grass namely S-1, S-6, S-7, S-10, S-13, S-17, S-18, S-20, S-21, S-24, S-30 and S-33 evaluated for forage attributes revealed that all entries were statistically at par for most of the forage attributes as compared to check S-92.
- Twelve polycross progenies of Setaria grass *viz.*, S-1, S-6, S-10, S-13, S-16, S-18, S-20, S-21, S-25, S-27, S-33 and S-92 are under evaluation.

Maize

• Twenty-one entries of fodder maize were evaluated against check African tall for plant height, green forage yield, grain yield and straw yield. All the maize entries were statistically at par with African tall for grain and straw yields. Entries PMG-3, PMG-36, PMG-93-1, PMG-93-2, PMG-41, PMG-9, PMG-52-1, PMG-97 and PMG-52 were found statistically at par with African tall for green forage yield.

Bajra-Napier hybrid programme

• Evaluation of sixteen entries of NB hybrids against two checks *viz*. NB-37 and IGFRI-5 for forage attributes indicated that all the NB hybrid entries were statistically at par for green forage yield with best check NB-37.

AICRP (FC&U), AAU, Jorhat

Evaluation of Ricebean Germplasm: Twenty-seven ricebean germplasms collected from Arunachal Pradesh, Mizoram, Manipur and Assam including checks were evaluated for their earliness, productivity, quality and disease and pests' resistance. Ten promising entries were selected on the basis of earliness, productivity, quality and disease and pests' resistance.

Promising Germplasm	Characters
JCR-20-1	Earliness, Drought tolerant, cold tolerant, moderately tolerant to water
	logged, tolerant to Major diseases and pests
JCR-20-3	GFY, DMY, Plant ht, CP%, Drought tolerant, Cold tolerant
JCR-20-5 GFY, DMY, Plant ht, tolerant to major diseases and pests	
JCR-20-6 Earliness, drought tolerant, cold tolerant, moderately tolerant to v	
	logged, tolerant to major diseases and pests
JCR-20-9, JCR-19-7,	GFY, DMY drought tolerant, cold tolerant, moderately tolerant to water
JCR-19-4, JCR-19-12	logged, tolerance to Major diseases and pests
JCR-19-2, JCR-19-9	GFY, DMY, Plant ht, CP%, Drought tolerant, Cold tolerant

National hybridization programme on Ricebean: A national hybridization programme was initiated, where 5 centresviz Jorhat, Kalyani, Bhubaneswar, Jabalpur and Vellayani participated. Each centre contributed two entries. Diallel crossing was made between the ten entries without reciprocal. After 8th generation of selection four crossed progenies were of selected and seeds of the selected entries were multiplied during *kharif* 2021.

SN	Entry	GFY(q/ha)	DMY(q/ha)	CPY(q/ha)
1	J8(V8 x V3)	325.20	62.30	17.5
2	J2(V2 x V9)	315.50	58.40	17.2
3	J5(V5 x V8)	297.30	56.42	17.5
4	J10(V10 x V4)	295.46	52.30	18.7

Hybridization programme in Ricebean: In *kharif* 2017 diallel cross was made (without reciprocal) among 7 selected entries to develop a variety with high biomass. The F4 progenies were evaluated in kharif 2021.

Parents	Features
JCR-14-7, JCR-13-5,	GFY, DMY Drought tolerant, Cold tolerant, moderately tolerant to
Shyamalima	water logging, tolerance to Major diseases and pests
JCR-08-7	Earliness
JCR-08-5, JCR-08-17	CP%
JCR-08-1	Plant height

Crossing programme in Ricebean: A new crossing programme is attempted taking 8 selected entries. Diallel crossing was made without reciprocal. Objective is to develop ricebean variety with early, high GFY, DMY and high protein quality

Parents	Features			
JCR-20-1, JCR-20-6	Earliness, Drought tolerant, cold tolerant, moderately tolerant to water			
	logged, tolerant to Major diseases and pests			
JCR-20-9	GFY, DMY drought tolerant, cold tolerant, moderately tolerant to water			
	logged, tolerance to Major diseases and pests			
JCR-18-3, JCR-20-3,	GFY, DMY, Plant ht, CP%, Drought tolerant, Cold tolerant			
JCR-19-9, JCR-19-4,				
JCR-19-2				

Evaluation of cowpea germplasm: Eight cowpea germplasm were evaluated in 2020 and selected entries were evaluated in kharif 2021.

Entry	GFY(q/ha)	DMY(q/ha)	Plant ht(cm)	CP%
JCC-20-1	363.05	67.50	110.00	13.88
JCC-20-3	347.64	60.49	105.80	13.33
JCC-20-4	349.63	60.63	107.13	13.65
JCC-20-6	309.34	58.05	105.27	13.28
UPC-5286	296.52	48.25	112.50	14.00

Evaluation Local paddy variety for dual purpose: Eight local paddy varieties (Baodhan) *viz.* Buruli, Amoni, Baola, Befu, Jeng, Negheru, Rangadhar and Rabgilibao were evaluated both for food and fodder purpose. First cut was given after 33 days of sowing and second cut was given after 30days of first cut. The performance of the rice varieties given below.

was given after socials of first car. The performance of the first varieties given serow.					
Entry	GFY(q/ha)	DMY(q/ha)	CP%	Seed Yield(t/ha)	
Burulibao	180.22	40.20	6.3	1.2	
AmoniBao	199.70	48.25	6.0	1.5	
BaolaBao	189.20	43.65	6.3	1.2	
Befubao	225.00	55.00	7.1	1.4	
JengBao	197.80	46.20	6.6	1.5	
NegheriBao	223.25	52.30	7.8	1.7	
Rangadharbao	221.45	51.40	6.8	1.5	
Rabgilibao	185.22	42.30	6.7	1.1	

AICRP (FC&U), CAU Imphal

Germplasm maintained

SN	Crop	No. of accessions				
1.	Rice bean	43				
2.	Maize	27				
3.	Cowpea	32				
4.	Oats	62				
5.	Lathyrus	4				
6.	Berseem	4				
	Perennial fodder crops					
7.	Bajra Napier hybrid	4				
/.	Seteria Grass	1				
	Signal Grass	1				

AICRP (FC&U), KAU, Vellayani

Induced mutagenesis for developing dual purpose genotypes in fodder cowpea: Seeds of forage cowpea (*Vignaunguiculata*) variety Aishwaryawas treated with chemical mutagen EMS with aim to develop a dual purpose cowpea with forage characters as well as good seeding behaviour. The M1 generation is harvested and the segregating M2 population is raised. Seeds from the selected plants in the M2 generation will be harvested separately and used to raise M3 generation.

Development of core collection of fodder cowpea genotypes: 139 accessions of forage cowpea (Vignaunguiculata) collected from NBPGR, New Delhi were raised in summer 2021 season. Data analysis is being carried out to identify the promising accessions which can be taken forward in future crop improvement programmes. Many of the accessions are showing promising forage characteristics. These are raised in the coming seasons and depending on the genetic distance among the accessions based on D² statistics, crosses will be attempted to generate variability.

Identification of *Stylosanthes* **species for yield and quality suited for cultivation in Kerala:** To identify the best *Stylosanthes* species from among *S.scabra, S.hamata, S.seabrana and S.guianensis* suited for the climatic conditions of Kerala, thirteen accessions are collected from different parts of the country and are raised in the field. They will be evaluated for forage yield and quality for the coming years and the best suited species for the climatic condition of Kerala will be identified.

Construction of population structure in *Stylosanthes* sp. using SSR markers: Genomic DNA of accessions of *Stylosanthes* genotypes from among *S. scabra, S.seabrana, S.hamata* and *S. guianensis* will be isolated from the leaf samples and will be screened using SSR markers. Phenotypic data of same genotypes will be utilized for interpretation of molecular data and construction of population structure of the genotypes will be attempted.

Variability studies in fodder bajra for yield and quality: Thirty genotypes of Fodder Bajra (*Pennisetum glaucum* (L.) R. Br.) will be raised in Summer 2022 and evaluated for yield and its correlated characteristics along with the nutritional profiling including antioxidant analysis.

Suitability of a potential underutilized legume *Vignastipulacea* for fodder purpose: Accessions of *Vignastipulacea* collected from NBPGR, New Delhi is raised in Rabi 2021 and evaluated for fodder and seed yield along with nutritional quality.

AICRP (FC&U), OUAT, Bhubaneswar

Rice bean: Three best performing pure lines identified as suitable for August-September sowing and January-February sowing because of better plant height and foliage growth was sown for seed multiplication during Kharif 2021.

AICRP (FC&U), IGKV, Raipur

Maintenance of forage garden: Total 47 varieties of different fodder crop received from IGFRI, Jhansi were grown on 15-07-2021 and maintain in forage garden.

Collection and Maintenance of germplasm of Dinanath Grass: Total 18 germplasm was collected during *Kharif*-2020 and 31 germplasm collected on 13.11.2021 from different region of Chhattisgarh, based on different morphological traits *i.e.* plant height, stem thickness, number of tillers/ branches, Days to 50% flowering, flower colour, panicle length and thickness. Out of 49 germplasm 23 having compact panicle and 26 having feathery panicle and 13 having early, 15 having late and 21 is medium duration. Seed of these germplasm were multiplied by sowing on 30.07.2021, for constituting next year evaluation trial with checks.

Exploration in collaboration with NBPGR: Different forage grasses (Pennisetum pedicellatum, Heteropogon contortus, Foxtail millet, Apluda, Dichanthium, Chloris gayna, leptochloachinensis, vignastipulaceae, Aristidaadsceiona. Vignahainiana. Digitarialongifolia, Clitoriaetc) were explored at different Village-District (Mujargondi-Gururbalod, Purur-JagtaraDhamtari, Kanharpuri-Kanker, Gotulmunda-GudpelKanker, CharamaKanker, Shri Guhan-NarharpurKanker, Hatka-LilwapaharKanker, Dabena-Kanker of Kanker C.G. with NBPGR Scientist team (Dr. Nilamani Dixit, Dr. Puran Chandra and Dr. Ravi)during 19-21 Oct 2021.

Collection of germplasm of Dinanath Grass: Total 16 germplasm were collected on 13.11.2021 from different region of Chhattisgarhbased on plant height, stem thickness, number of tillers/ branches, Days to 50% flowering, flower colour, panicle length and thickness.

Table 1: Passport data of collected germplasm of Dinanath grass

S. N.	GP Name		Village	Block	District	Date of Collection
1	RDC	1	Cherikheri	Dharsiwa	Raipur	02/11/2021
2	RDC	1b	Labhandi	Dharsiwa	Raipur	03/11/2020
3	RDC	1c	Cherikheri	Dharsiwa	Raipur	03/11/2020
4	RDC	2	Cherikheri	Dharsiwa	Raipur	02/11/2021
5	RDC	2b	Cherikheri	Dharsiwa	Raipur	02/11/2020
6	RDC	3	Cherikheri	Dharsiwa	Raipur	02/11/2020
7	RDC	4	Cherikheri	Dharsiwa	Raipur	02/11/2021
8	RDC	4b	Jora	Dharsiwa	Raipur	03/11/2020
9	RDC	5	Jora	Dharsiwa	Raipur	02/11/2021
10	RDC	6	Jora	Dharsiwa	Raipur	13/11/2021
11	RDC	6b	Jora	Dharsiwa	Raipur	13/11/2021
12	RDC	6c	Jora	Dharsiwa	Raipur	13/11/2021
13	RDC	7	Cherikheri	Dharsiwa	Raipur	13/11/2021
14	RDC	8	Cherikheri	Dharsiwa	Raipur	13/11/2021
15	RDC	9	Cherikheri	Dharsiwa	Raipur	13/11/2021
16	RDC	10	Jora	Dharsiwa	Raipur	03/11/2020
17	RDC	10b	Jora	Dharsiwa	Raipur	25/11/2021
18	RDC	11	Jora	Dharsiwa	Raipur	03/11/2020
19	RDC	12	Jora	Dharsiwa	Raipur	03/11/2020
20	RDC	13	Cherikheri	Dharsiwa	Raipur	03/11/2020

21	RDC	14	Jora	Dharsiwa	Raipur	03/11/2020
22	RDC	14b	Jora	Dharsiwa	Raipur	03/11/2020
23	RDC	15	Jora	Dharsiwa	Raipur	03/11/2020
24	RDC	16	Jora	Dharsiwa	Raipur	03/11/2020
25	RDC	16b	Jora	Dharsiwa	Raipur	03/11/2020
26	RDC	17	Jora	Dharsiwa	Raipur	03/11/2020
27	RDC	18	Jora	Dharsiwa	Raipur	03/11/2020
28	RDC	19	Jora	Dharsiwa	Raipur	03/11/2020
29	RDC	20	Cherikheri	Dharsiwa	Raipur	13/11/2021
30	RDC	21	Cherikheri	Dharsiwa	Raipur	13/11/2021
31	RDC	22	Cherikheri	Dharsiwa	Raipur	13/11/2021
32	RDC	23	Cherikheri	Dharsiwa	Raipur	13/11/2021
33	RDC	23b	Cherikheri	Dharsiwa	Raipur	03/11/2020
34	RDC	24	Cherikheri	Dharsiwa	Raipur	13/11/2021
35	RDC	25	Cherikheri	Dharsiwa	Raipur	13/11/2021
36	RDC	26	Cherikheri	Dharsiwa	Raipur	13/11/2021
37	RDC	27	Cherikheri	Dharsiwa	Raipur	13/11/2021
38	RDC	28	Cherikheri	Dharsiwa	Raipur	13/11/2021
39	RDC	29	Cherikheri	Dharsiwa	Raipur	13/11/2021
40	RDC	30	Cherikheri	Dharsiwa	Raipur	13/11/2021
41	RDC	31	Cherikheri	Dharsiwa	Raipur	14/11/2021
42	RDC	32	Cherikheri	Dharsiwa	Raipur	14/11/2021
43	RDC	33	Cherikheri	Dharsiwa	Raipur	14/11/2021
44	RDC	34	Labhandi	Dharsiwa	Raipur	14/11/2021
45	RDC	35	Cherikheri	Dharsiwa	Raipur	25/11/2021
46	RDC	36	Cherikheri	Dharsiwa	Raipur	25/11/2021
47	RDC	37	Purur	Jagtara	Dhamtari	19/10/2021
48	RDC	38	Gujargondi	Gurur	Balod	19/10/2021
49	RDC	39	Lilvopahar	Umrahad	Kanker	21/10/2021

Maintenance of germplasm of Dinanath Grass: Total 25 germplasm maintain by sowing on 30.07.2021, which was collected during *Kharif*-2020. Evaluation of these germplasm for different morphological traits *i.e.* plant height, stem thickness, stem colour, number of tillers/branches, Days to 50% flowering, flower colour, panicle length and thickness. Seed of these germplasm were multiplied for constituting next year evaluation trial with checks.

Seed Multiplication of promising lines of Cowpea: RCC-48, RCC-65, RCC-46, RCC52 were sown on 28-07-2021 for seed multiplication which will incorporate in IVT. These genotype perform better under Chhattisgarh region.

AICRP (FC&U), BAU, Ranchi

Forage Maize

• Generation Advancement: BAU FM-201 and BAU FM-202

Dinanath Grass

- Thirteen germplasm were maintained.
- Five F₂ population of Dinanath grass is being maintained.
- **Station trial**: Ten entries were tested in Dinanath trial. The entry BAU DN-108 (495.15 q/ha) was found significantly high yielder followed by BAU DN-109 (471.89 q/ha) and JHD 19-2 (459.74 q/ha).

Bajra Napier hybrid

Station trial: Out of eight entries tested in station trial, the entry BAU BN-101 (474.3 q/ha) were found at par with best check Co-3 (456.2 q/ha) and significantly superior with second best check NB-21 (350.3 q/ha).

AICRP (FC&U), JNKVV, Jabalpur

Forage Plant Genetic Resources

_		** **	total accession	source	area of collection
Soybean	45	5	50	-	NRC Indore &Sehore
Rice bean	37	6	43	NBPGR, New Delhi	

Rice bean

Generation of materials/entries/crosses made during Kharif 2021 Crosses made and advanced in Rice bean

- Seven new crosses were made
- Selections were made and advanced as per details below

Cross advanced	4F ₁	4F ₂	5F ₃	2F ₄	4F ₅
Selection made	-	22	09	07	05

- Single plant progenies and promising genotypes were also evaluated for different fodder traits.
- Five new accessions were obtained by NBPGR, New Delhi
- Selections were made for different fodder traits in the mutation derived populations of Bidhan -1 (EMS 0.4% and 0.8% for 1, 2 and 4hrs treatments)

Sovbean

- Single plant selections were made using different fodder traits.
- Five new accessions were obtained by NRC, Indore

AICRP (FC&U), MPKV, Rahuri

Evaluation of B x N hybrids: Eight Bajra x Napier crosses were attempted during *Rabi*-2020. Crossed seed of these crosses was sown during *Kharif*-2021 for isolating heterotic clones for further identification of high yielding B x N hybrids for green forage yield.

Crossing programme: Eleven new crosses were attempted involving four elite Bajra forage lines as female and nine Napier grass lines as male parents during *Rabi*-2021 as per details below.

SN	Crossing details	SN	Crossing details
1	Giant Bajra x GBN-1	7	Giant Bajra x GBN-40
2	Giant Bajra x GBN-4	8	BAIF Bajra-1 x GBN-10
3	Giant Bajra x GBN-7	9	TSFB-15-4 x GBN-19
4	Giant Bajra x GBN-10	10	TSFB-15-8 x GBN-19
5	Giant Bajra x GBN-14	11	TSFB-15-8 x GBN-30
6	Giant Bajra x GBN-27		

AICRP (FC&U), AAU, Anand

Maintenance of germplasm

SN	Crop	No. of Lines
1.	Sorghum	571
2.	Maize	198
3.	Pearl millet	137
4.	Cowpea	42
5.	Sorghum Sterile line & its maintainers	8
6.	Pearl millet Sterile line & its maintainers	4
7.	Clitoria	24

New Germplasm collection

SN	Crop	Total numbers	Source
1.	Sorghum	09	Gujarat-Local
2.	Maize	11	Gujarat-Local
3.	Bajra	01	Gujarat-Local

Forage Pearl millet: New crosses: 10

Sr. No.	Details of cross	Objective(s)
1.	GAFB 4 x AFB-45	
2.	GAFB 4 x AFB-54	Higher GFY
3.	GAFB 4 x AFB-58	Higher tillering
4.	GAFB 4 x AFB-62	Multicut type
5.	GAFB 4 x AFB-71	
6.	BAIF Bajra x AFB-45	
7.	BAIF Bajra x AFB-54	
8.	BAIF Bajra x AFB-58	
9.	BAIF Bajra x AFB-62	
10.	BAIF Bajra x AFB-71	

Segregating materials

Generation	Sown	Selected IPS / Bulk
F_1	11	11
F_2	50	150
F ₃	45	45
F_4	105	81
F ₅	143	100
F_6	46	25
F ₇	43	15 Bulks
TOTAL	443	412+15(B)

Forage Maize: New Crosses: 14

Sr. No.	Details of cross	Objective(s)
1.	IC-130882 X ORIGIN MEXICO-6354	
2.	IC-130882 X ORIGIN MEXICO-6357	
3.	IC-130882 X ORIGIN MEXICO-6377	
4.	IC-130882 X GDRFG-1644	
5.	IC-130913 X IC-130976	To develop tillering type maize
6.	IC-130913 X IC-130987	To develop tall type maize
7.	IC-130913 X IC-131016	To develop maize having broad
8.	IC-130913 X MEXICAN ACCESSION-4207	& more leaf length type
9.	IC-130913 X NP96K-2415	
10.	IC-130913 X ORIGIN MEXICO-6345	
11.	IC-130913 X ORIGIN MEXICO-6354	
12.	IC-130913 X ORIGIN MEXICO-6357	
13.	IC-130913 X ORIGIN MEXICO-6377	
14.	IC-130913 X GDRFG-1644	

Forage Maize: Segregating materials

Generation	Sown	Selected IPS / Bulk
F_1	49	44
F_2	03	16
F_3	30	64
F_4	141	107
F ₅	133	119
F_6	99	142
F ₇	23	12 Bulks
TOTAL	478	492 12(B)

Forage Sorghum: Segregating materials

Generation	Sown	Selection(IPS)/ Bulk
F_1	02	-
F_2	18	84
F_3	29	23
BC_2F_4	106	90
F_4	04	8
F ₅	22	26
F_6	21	22
F ₇	63	17 Bulks
TOTAL	265	253 + 17 (B)

Varieties released at State Level (in last 3 years)

Forage Bajra: Gujarat Anand Forage Bajra 4 (GAFB 4): Recommended by 14th Combined Joint AGRESCO Meeting of SAUs held during April 3-5, 2018 at Junagadh Agricultural University, Junagadh and accepted for the release for Middle Gujarat. It has single cut nature with light green foliage, tall plant height up to 240 cm, more tillers (average 3.7) and leaves per plant (average 29), thin stem and high leaf stem ratio (0.9), average CP 7.66%, green fodder yield nearly 580q/ha, dry fodder yield nearly 120q/ ha.

Other Activities Kharif-2021

AICRP (FC&U), BAU, Ranchi

Awards and Recognitions

- **Appreciation Award** received on 11th Dec. 2021 during 41st Rabi Research Council meeting for active support and contribution in developing crop variety of Maize (Birsa Baby Corn-1) on crop improvement aspect.
- **Best Research Award** received on 3rd International Conference (Hybrid Mode) on Food, Agriculture and Innovation (3rd ICFAI), 24-26 December 2021, Ranchi, Jharkhand.
- Outstanding Plant Breeder Award received on 3rd International Conference (Hybrid Mode) on Food, Agriculture and Innovation (3rd ICFAI), 24-26 December 2021, Ranchi.
- **Co-chairmanof the technical session** during 3rd International Conference (Hybrid Mode) on Food, Agriculture and Innovation (3rd ICFAI), 24-26 December 2021 Ranchi.

Abstracts in Seminar/Symposium

- Prasad Y, Kumar S, Kumar R, Kumar K, Izhar T, Bhushan S and Kumar S(2021). Genetic diversity studies in forage maize (*Zea mays* 1.) for green fodder yield. 3rd International Conference (Hybrid Mode) on Food, Agriculture and Innovations 'ICFAI-2021' held at Ranchi, Jharkhand.
- Kumari Manisha, Kumar, K; Kumar, AM, Kumar R, Prasad K,Prasad Y, Kumar S and Kumar SB (2021). Correlation and path analysis studies in chickpea (*Cicer arietinum* 1). 3rd International Conference (Hybrid Mode) on Food, Agriculture and Innovations 'ICFAI-2021' held at Ranchi, Jharkhand.
- Kumari Manisha, Kumar, K; Kumar, AM, Kumar R, Prasad K, Prasad Y, Kumar S and Kumar SB (2021). Divergence studies in chickpea (*Cicer arietinum* 1.).3rd International Conference (Hybrid Mode) on Food, Agriculture and Innovations 'ICFAI-2021' held at Ranchi, Jharkhand.
- Kumar S, Kumar SB and Prasad Y (2021). Characterization of upland rice (*Oryza sativa* L) germplasm under rainfed ecology.3rd International Conference (Hybrid Mode) on Food, Agriculture and Innovations 'ICFAI-2021' held at Ranchi, Jharkhand.
- Kumar R,Prasad Y, Kumar K, Kumar S and Shanti Bhushan (2021). Production of quality seed through participatory mode.3rd International Conference (Hybrid Mode) on Food, Agriculture and Innovations 'ICFAI-2021' held at Holiday Home, Ranchi, Jharkhand.

Participation in Seminar/Conference

• Participated in the "3rdInternational Conference (Hybrid Mode) on Food, Agriculture and Innovations 'ICFAI-2021' held at Ranchi, Jharkhand during 24th to 26th Dec.2021.

Student Guided: Minor AdvisorM.Sc-1 in PBG; Major Advisor M.Sc-1 in Agronomy

TSPs conducted: Total thirty three demonstrations were conducted during Kharif 2021, Out of that 18 fodder demonstrations were conducted at Angara block in Ranchi district, which included BxN hybrid and Maize. Fifteen fodder demonstration of Maize were conducted at Mander Block, Village-Nagra, Masmano and Sursa.

TSP Training Programme

SN	Date	District	Sub- District	Village/ Pancha	Activities	No. of beneficiaries
				yat		
1.	7 - 8 Sept, 2021	Shahebganj	Mandro	Shimra	Farmer's training	60
2.	7 - 8 Sept., 2021	Shahebganj	Mandro	Shimra	Input distribution	50
3.	31 st Aug. 2021	Ranchi	Khumariya	Kanke	Planting material of	25
4.	31 st Aug. 2021	Ranchi	Ormanjhi	Aara	BxN, Guinea, Urea,	25
				Kerum	SSP, MOP	
5.	27 th Oct. 2021	Ranchi	Angara	Guridhi	Distribution of Duch	48
					hoe & Kisan Dairy &	
					Training Kit	

AICRP (FC&U), AAU, Jorhat

Research Papers

Balmiki S, Neog SB and Barua NS (2021) Genetic variability in Ricebean (*Vigna Umbelleta*Thunb.) for important quantitative characteristics *Forage Res.* 47 (2): 172-179.

Das RR, Das G, Talukdar P and Neog SB (2021) Genetic analysis for yield and yield attributing traits in Cowpea (*Vignaunguiculata* L. Walp) *Legume Research* 44: 900-905.

Research Guidance: Dr S Bora Neog - M Sc. (Agri): 1

Course taught: Dr S Bora Neog: - BSc: 1 MSc: 1

Extension Leaflet:

- Banpanirsamayatpasukhadyajugan(Assamese)
- Pasurupajyogiudbhid(Assamese)

FTD conducted:30

TSP activities: Adopted seven villages in Baksa district, Assam

Seed/ planting material sold

Sl	Forage crops	Total quantity (Kg)		
No		Total Slips (No)	Foundation Seed	TFL Seed
1.	Hybrid Napier CO4, CO5	50,000		
2.	Setaria : PSS-1	20,000		
3.	Guinea grass	10,000		
4.	Rice bean: Shyamalima		25Kg	2.0qtls
	Grand Total	80,000	25kg	2.0qtls

AICRP (FC&U), UAS (B) ZARS Mandya

Awards and Honours: 04

- Received certificate of appreciation in Development of Forage Production Technology "Agase Intercropping with BN Hybrid or perennial fodder sorghum" during 2021(National Level)
- Received certificate of appreciation in Development of Forage Production Technology "Perennial grass based cropping system involving Bajra Napier Hybrid grass with *Sesbania grandiflora*" during 2021(National Level)
- Dr. Nagesh Chikkarugi, Senior Technical Assistant, AICRP on Forage crops & Utilization awarded Best Technical Employee of University of Agricultural Sciences, Bangalore on 56th foundation day of UAS Bangalore on 1st October-2021.
- Best field demonstration award by UAS, Bangalore during Kisan Mela held on 1st and 02nd of December-2021 V. C. Farm, Mandya Krishimela -2021).

Publications

Full Length Publications: 04

- Naveena H, Shekara BG, Manoj KN and Chikkarugi NM. (2021) Effect of different organic sources of nutrients on green fodder yield, nutrient uptake and economics of fodder maize and succeeding fodder cowpea under Maize-cowpea cropping system. *Forage Res.* 47 (1): 130-134.
- Manoj KN, Shekara BG, Sridhara S, Jha PK, Prasad PVV (2021) Biomass quantity and quality from different year-round cereal—legume cropping systems as forage or fodder for livestock. *Sustainability* 13: 9414. https://doi.org/10.3390/su13169414 (NAAS-8.58)
- Shekara BG, Mahadevu P, Chikkarugi NM and Manasa N.(2021)Performance of fodder pearl millet genotypes to different levels of nitrogen. *Forage Res.* **47** (2): 193-196
- Naveena BM, Shekara BG, Vishwanath AP, Kalyana Murthy K N and Chikkarugi NM(2021) Effect of times of sowing and nitrogen levels on growth and seed yield of fodder oats (*Avena sativa* L.), *J. Pharm. Innov*10(12): 2752-2756.

Kannada Folders: 04

- Paustidayak Dwidala Mevin Belegalu
- Adhik Hasiru Mevigagi navin besaya tantrikategalu
- Vividh Mevu belegala sudharit Utpadana Tatntrikategalu
- Adhik Iluvarigagi Mevin Toke Godi Tali

TV talk delivered: 01- Fodder Production Technologies on TV delivered on 26/10/2021

External examiner/ thesis evaluation of PG Students.

Mr. Iranna Sangalad - Precision Nitrogen management for enhancing productivity and nitrogen use efficiency in fodder maize (*Zea mays* L.) - UAS, Dharwad

Important persons visit

- Vice Chancellor. UAS, GKVK, Bangalore
- Boards Members of UAS, GKVK, Bangalore
- Director of Research, UAS, GKVK, Bangalore
- Managing Director CADA, Govt of Karnataka
- Associate Director of Research, UAS, Bangalore

Meetings / Workshop/Winter School attended: 08

SN	Title	Date	Events held at	Scientist Participated
	Environmental Ethics &	05/06/2021	MPUAT, Udaipur	Dr. Nagesh Chikkarugi
1	Ecological restoration: Issues			
	and Strategies			
2	Public Private Partnership for	07/06/2021	DDG- Agricultural	Dr. B G Shekara
	Sustainable Irrigation		Education-ICAR	
3	Increasing farmers Income:	18/06/2021	UAS, Bangalore	Dr. Nagesh Chikkarugi
3	Way Forward			
	Business opportunities in	20/06/2021	UAS, Bangalore	Dr. B G Shekara
4	exporting of fruits and			
-	vegetables- Alumni			
	Association, UAS, Bangalore			
	National Webinar on	07/07/2021	MPUAT, Udaipur	Mrs. Manasa N
5	Microbial Technologies for			
3	sustainable Agriculture and			
	Climate change Mitigation			
	National Group Meet on	20-09-2021	IGFRI, Jhansi	Dr. B. G. Shekara
6	Forage crops & Utilization-		(Online Mode)	Dr. P. Mahadevu
	Kharif-2021			Dr. Nagesh Chikkarugi
7	Quality control of microbial	25- 29 Oct,	NIPHM, Hyderabad	Dr. Nagesh Chikkarugi
	bio-pesticides	2021		
	Fodder production	12/08/2021	Bhavikere Village, Bovi	Dr. S. N. Vasudevan
	technologies under tribal sub		Colony, Saraguru	Dr. B. G. Shekara
8	plan		Taluka, Mysore district	Dr. Chandrakal Hanagi
				Dr. Sunil C. M.
				Dr. Nagesh Chikkarugi

Training/DAESI Programme attended as resource person: 15 by Dr B G Shekara

SN	Title	Date	Place
1	Fodder production technologies in livestock	25-08-2021	EEU, Naganahalli
	skill training programme		
2	Sugarcane and Paddy production technologies	06-08-2021	RSK, Kasaba, Narsipura
3	Rainfed farming and natural resource	17-09-2021	College of Horticulture, Mysore
	management		
4	Fodder production technologies	24-09-2021	KVK, Mandya
5	Fodder production technologies	28-09-2021	KVK, Mandya

6	Fodder production technologies	01-10-2021	Online mode-SAMETI-GKVK	
7	Fodder production technologies	01-10-2021	DAESI, ZARS, Mandya	
8	Fodder production technologies	12-10-2021	KVK, Mandya	
9	Rainfed agriculture and natural resource	19-10-2021	ZARS, Mandya	
	management			
10	Rainfed agriculture	22-10-2021	KVK, Mandya	
11	Oilseed production technologies	13-11-2021	DESI-College of Agriculture,	
			Mandya	
12	Cotton Cultivation	26-11-2021	KVK, V. C Farm, Mandya	
13	Cotton Cultivation	30-11-2021	ZARS, V. C Farm, Mandya	
14	Fodder & Pulses production technologies	08-12-2021	EEU, Naganahalli	
15	Maize Production Technologies	18-12-2021	CoA, Mandya	

Kisan Samparka Kendra visits by scientists

SN	Scientist	RSK	Date	Problems identified and suggestions given		
		of visit				
1	Dr. Nagesh	Chikkayyan	06-12-2021	Involved in interaction with farmers and		
	Chikkarugi	Chatra, Mysore		given information about recently released		
		District		varieties of the university, pests and diseases.		
2	Dr. B G	T. Narasipura,	20-12-2021	Information given about use of bio fertilizers		
	Shekara Mysore District			in different field crops and paddy varieti		
				suitable for summer season and nutrient		
				management in sugarcane crop.		
3	Manasa N	Bettada pura,	06-12-2021	Ragi varieties and production technologies		
		Piriyapattana		and Production technologies of different		
		Taluk, Mysore		fodder crops		
		District				

Teaching activities: Courses handled

- Breeding Cereals, Forages and Sugarcane GPB 511 (2+0)
- Insect Pests of Field Crops & Stored Grains and their Management-AET-311 (1+1)
- Crop production Technology-2 AGR 221 (1+1) oil seeds commercial crops & fiber crops COA, Chamarajanagara (UG Course)
- Principles and Practices of weed Management AGR 503 (1+1) (CoA, Mandya) (PG Course, at CoA, V. C. Farm, Mandya)

Research Guidance

- \blacktriangleright **M.Sc.** (Agri.) in GPB 1
- ➤ M. Sc. (Agri.) in Agronomy-1
- **Ph.D.** (Agri.) in Agronomy- 1

FTDs conducted: 20

TSP activities

- ➤ Critical inputs *viz.*, seeds of Fodder Maize, Multi-cut fodder Sorghum and Hedge lucerne were procured and distributed to tribes.
- > Provided sickles and plastic crates for daily usage of agriculture purpose

Seed/ planting material sold

S. No.	Crops	Root Slips Sold(In Lakhs)
1.	Napier Bajra Hybrid (Co-3)	0.30
	Napier Bajra Hybrid (BNH-10)	0.60
2	Guinea grass (JHGG-08-1)	0.25
3	Rhodes grass (Selection)	0.05
4	Signal grass(Selection)	0.04

Quality seed production Kharif 2021

<u> </u>				
Sl. No	Crop	Variety	Class of seed	Quantity Produced(q)
1	Forage Cowpea	MFC-09-1	NS	0.15
2	Forage Cowpea	MFC-08-14	NS	0.04
3	Fodder Cowpea	MFC-09-3	NS	0.08

Externally funded projects: 01

• Accelerating green fodder production through establishment of model demonstration and multiplication units in southern Karnataka with budget outlay of 25 lakhs. (Dept of animal husbandry and veterinary services, GOK).

Variety developed

Fodder Cowpea variety MFC-09-3- Dr. P. Mahadevu & Dr. B G Shekara Notified vide Ref No. SO.8(E), dated 24/12/2021

Other activities

Served as Chairman of the committee constituted by ADR for disposal of old records (1975-2005) of ZARS, V C Farm, Mandya

AICRP (FC&U), SKRAU, Bikaner

Breeder seed production during Kharif 2021

Crop	Variety	Indent (kg)	Production (kg)
Fodder pearl millet	Raj Bajra-1(RBB-1)	70 kg	200 kg
Sewan grass	Jaisalmeri sewan	10 kg	11 kg

Course taught

- Dr. R.C. Bairwa PG course AGRON 522 Principles and practices of weed management
- Dr. A. S. Godara PG course AGRON 523-Dry land farming and watershed management

FTDs conducted: Total 23 fodder demonstrations were conducted during Kharif-2021, including 10 of cluster bean, 11 of fodder bajra and 2 of NB –hybrid.

Training conducted: Farmers were given training of green fodder production during kharif season at the time of distribution of demonstrations under AICRP on FCU.

Other assigned duties

Dr. A. S. Godara

- Conducted three station trials on cluster bean and cotton
- Worked as Farm In-charge.
- Member of physical verification committee, ARS, Bikaner
- Sell and Purchase committee member of ARS, Bikaner and NSP Bikaner

Dr. R. C. Bairwa

- Conducted station trial on Dhaman and Sewan grass.
- PG Hostel warden

AICRP (FC&U), TNAU, Coimbatore

Awards and Honours: 1

• **Best Poster award** was received by Dr. T. Ezhilarasi for poster entitled 'Agathi (*Sesbaniagrandiflora* L.): Nutritious tree fodder suitable for Tamil Nadu' during International conference on Future challenges and prospects in plant breeding held on 6th – 7th October, 2021 at TNAU, Coimbatore.

Publications

Book chapters with ISBN: 3

- Ezhilarasi T, Babu C and Ganesan KN. (2021). Nucleus and breeder seed production of perennial fodder sorghum varieties. In: Manual on Nucleus and Breeder seed production in field crops, Centre for Plant Breeding & Genetics, Tamil Nadu Agricultural University, Coimbatore. P. 189-194. (ISBN: 978-81-95444-50-2)
- Ezhilarasi T, Ganesan KN and Geetha S. (2021). Nucleus and breeder seed production of lucerne and hedge lucerne. In: Manual on Nucleus and Breeder seed production in field crops, Centre for Plant Breeding & Genetics, Tamil Nadu Agricultural University, Coimbatore. P. 195-202. (ISBN: 978-81-95444-50-2).
- Geetha S, Ganesan KN, Kumaresan D and Binodh Asish K. (2021) Breeder seed production programme in Tamil Nadu Agricultural University and its impact on crop productivity. In: Manual on Nucleus and Breeder seed production in field crops, Centre for Plant Breeding & Genetics, Tamil Nadu Agricultural University, Coimbatore.P.1-13. (ISBN: 978-81-95444-50-2).

Research articles: 2

- Aswini MS, Ganesan KN, Ezhilarasi T and Sivakumar SD. (2021). Combining ability and heterosis studies in fodder pearl millet [*Pennisetumglaucum* (L.) R. Br.]. *Electron. J. Plant Breed.* 12 (3): 1011-1021. (NAAS: 5.14)
- Aswini MS, Ganesan KN, Ezhilarasi T and Sivakumar SD. (2022). Genetic studies on association and inter-relationship of green fodder yield and fodder quality traits in hybrids of fodder pearl millet [Pennisetum glaucum (L.) r. br.]. Intern. J. Multidisciplinary Res. and Growth Eval. 3(1): 01-06.

Seminar/Symposia papers: 5

- Aswini MS and KN Ganesan. (2021). Genetic variability and association studies for enhanced green fodder yield in fodder pearl millet [*Pennisetumglaucum* (L.) R. Br.]. In: Book of abstracts of the International conference onFuture challenges and prospects in plant breeding held during 6-7 October, 2021, TNAU, Coimbatore. p 164. (ISBN: 978-81-954445-2-6)
- Ezhilarasi T, Ganesan KN, Sivakumar SD, Leelavathi S and S Geetha. (2021). Agathi (*Sesbaniagrandiflora* L.): Nutritious tree fodder suitable for Tamil Nadu. In: Book of abstracts of the International conference onFuture challenges and prospects in plant breeding held during 6-7 October, 2021, TNAU, Coimbatore. p 71. (ISBN: 978-81-954445-2-6)

- Ganesan KN, Ezhilarasi T, Shamini K, Sivakumar SD and Geetha S. (2021). Evaluation of pasture legume *Stylosanthes* spp. for green fodder yield and quality. In: Book of abstracts of the International conference onFuture challenges and prospects in plant breeding held during 6-7 October, 2021, TNAU, Coimbatore. p 72. (ISBN: 978-81-954445-2-6)
- Shamini K, Ezhilarasi T, Ganesan KN, Sivakumar SD and Geetha S. (2021). Assessing the existing genetic variability and association of different traits for enhanced green fodder yield in Guinea grass. In: Book of abstracts of the International conference onFuture challenges and prospects in plant breeding held during 6-7 October, 2021, TNAU, Coimbatore. p 76. (ISBN: 978-81-954445-2-6).
- Subbulakshmi M, Ganesan KN, Iyanar K, Sivakumar SD and Ravichandran V. (2021). Genetic variability for green fodder yield in pearl millet-napier hybrids. In: Book of abstracts of the International conference onFuture challenges and prospects in plant breeding held during 6-7 October, 2021, TNAU, Coimbatore. p 77. (ISBN: 978-81-954445-2-6)

Important persons visited to AICRP FC centre

- ➤ Hon'ble Minister of state for Agriculture and Farmer's Welfare, Thiru. M.R.K. Paneer Selvam and Thiru C. Samayamoorthy IAS., Agricultural Production Commissioner and Secretary to Government of Tamil Nadu inaugurated the Fodder Pellet unit funded by TANII scheme (2019-21) entitled "Pelletization of forage crops for enhancing livestock productivity" Govt. of Tamil Nadu at Department of Forage Crops, TNAU, Coimbatore on 28.07.2021.
- ➤ Hon'ble Minister Shri. C. Madhuswamy, Minister for Minor Irrigation, Law, Parlimentary Affairs & Legislation of Karnataka State, Visited forage garden and Fodder Pellet production unit on 23.08.2021.
- ➤ Dr. J. Jeyaranjan, Vice Chairman, State planning commission has visited the fodder pellet production unit funded by TANII on 22.12.2021.
- ➤ Mr. Sam Joseph, General Manager, and his team from HATSUN Agro Product Ltd., visited Department of Forage Crops, TNAU, Coimbatore on 19.01.2022 to review the progress of HATSUN Chair Assistant Professor Chair Scheme.

Student(s) guided:

Ph.D. in Plant Breeding and Genetics – 4; M.Sc. (Agri.) in PBG – 2;

M.Sc. (Agri.) in Agronomy -1

M.Sc. (Agri.) in Entomology – 1.

FTDs conducted: 20

Training conducted for farmers/ NGO/ Govt. officials: 8

A total of eight trainings entitled "Sustainable fodder production strategies for enhancing livestock productivity" were conducted at KVKs throughout Tamil Nadu for farmers.

S. No.	Date	Place	No. of beneficiaries
1.	28.08.2021	ICAR-KVK, Papparapatti, Dharmapuri	105
2.	29.08.2021	ICAR-KVK, Sandhiyur, Salem	98
3.	22.10.2021	ICAR-KVK, Vamban, Pudukottai	95
4.	22.10.2021	ICAR-KVK, Sirugamani, Trichy	96
5.	28.10.2021	ICAR-KVK, Ramanathapuram	90
6.	28.10.2021	ICAR-KVK, Aruppukottai	98
7.	28.10.2021	ICAR-KVK, Madurai	100
8	28.10.2021	ICAR-KVK, Pongalur, Tiruppur	52

Quantity of seeds/ planting material produced and supplied (2021-22)

S. No.	Crop/ variety	Class of seeds	Quantity produced	Quantity supplied
I	SEEDS (kg)	Seeds	produced	зарриса
1.	Multicut Fodder sorghumCO (FS) 29	BS	167.00	167.00
		TFL	1.25	1.25
2.	Fodder sorghum CO 31	BS	456.00	456.00
		TFL	1000.00	878.00
3.	Folder CommonTNEC 0026	BS	50.00	50.00
3.	Fodder CowpeaTNFC 0926	TFL	1.10	1.10
4.	Fodder Cowpea CO 9	TFL	3.10	3.10
4.	Maize African tall	TFL	13.00	11.10
5.	Desmanthus CO 1	TFL	312.10	312.10
	Desmanthus CO 2	BS	2.00	2.00
6.		TFL	16.00	15.35
7.	Lucerne CO 3	BS	50.00	50.00
/.		TFL	0.75	0.75
8.	Agathi	TFL	50.00	47.35
	Total		2,122.30	1,995.10
II	PLANTING MATERIAL (Nos.)			
1.	BN hybrid CO (BN) 5 stem cuttings		4,00,000	3,86,075
2.	Guinea grass CO (GG) 3 rooted slips		2,500	2,250
3.	Cenchrus CO 1 – Rooted slips (Nos.)		300	290
4.	Cenchrus CO 2 – Rooted slips(Nos.)		50	20
	Total		4,02,850	3,88,635

Interaction with farmers, NGO and Govt. staff: Interactive meetingon 'Importance of green fodder and fodder pellet production' were conducted at Department of Forage Crops with cattle growers of Tamil Nadu. Through these programmes, **1639 numbers** of cattle growers and entrepreneurs were sensitized about the importance of balanced feeding in livestock, location specific improved fodder varieties and its production and preservation technologies.

Externally funded project: 2

S. No.	Title of the project	Sponsors	Duration	Outlay (Rs. in lakhs)	PI
1.	HATSUN chair Assistant Professor scheme in PB&G for forage Crop research	HATSUN Agro Product. Ltd. (HAPL)	2018-23	64.74	Dr. K.N.Ganesan Senior Breeder AICRP (FC&U) i/c
2.	Expansion of Activities of Biotech-KISAN Hub in Two Aspirational Districts (Virudhunagar And Ramanathapuram) of Tamil Nadu – Phase II'	DBT	2019- 2021	76.00	Dr. S.D. Sivakumar AICRP Agronomist
	Total	-		140.74	

AICRP (FC&U), BCKV, Kalyani

Research papers in refereed journals

Atta K, Pal AK and Jana K (2021). Effects of salinity, drought and heavy metal stress during seed germination stage of ricebean [*Vigna umbellate* (Thunb.) Ohwi and Ohashi]. *Plant Physiol. Rep.Springer*(ISSN 2662-253X), 26 (1): 109-115.

Khan R, Biswas S, Kundu CK, Jana K,Ray R and Bandopadhyay P. (2021). Effect of conservation tillage practices on growth attributes of different fodder crops and soil moisture depletion. *International Journal of Chemical Studies* 9 (1): 1846-1852.

Research Guidance: M. Sc. (Ag.) in Agronomy – 1; Ph. D. in Agronomy – 3

Courses taught: Agronomy of fodder and forage crops and other courses

FTDs conducted: 50 units [Forage maize (cv. J 1006) - 10 units, Ricebean (cv. Bidhan ricebean 1 & 2) – 20units and BN hybrid (cv. CO3 and CO4) – 20units.

TSP activities

80 tribal farmers of Pingla, Narayangarh block of Paschim Medinipur district, Hirbandh block of Bankura district of West Bengal (Red & laterite zone i.e. western part) were benefitted by different field activities organized under TSP Programme of AICRP on FC & U, BCKV, Kalyani centre. Agricultural, livestock and fodder & forage cum food related interventions were demonstrated for socio-economic condition uplift of tribal farmers/families under adopted villages of TSP programme.

Forage Maize (cv. J 1006), Rice bean (cv. Bidhan Ricebean-1, Bidhan rice bean-2 & Bidhan Rice bean-3), Hybrid maize (cv. Disha), Coix (cv. Bidhan Coix-1), forage Blackgram (cv. Goutam), Mung (Meha), Moringa seeds, vegetable seeds (brinjal, chili, bhindi, onion etc.) planting materials (cuttings) of Bajra-Napier Hybrid (CO 3, CO 4 & CO 5) along with rhizobium culture, insecticides (lancergold), fungicides (SAAF), Knap sack sprayer (general & battery operated), micro-nutrient mixture (nutri gold), literature (book on cultivation, leaflets in Bangla on forage crops) and plastic bucket were distributed among selected tribal farmers. Tribal farmers' meet cum demonstrations on improved cultivation practices of fodder & forage crops was conducted successfully.

Farmers' Meeting: 2 (Two)

Seed production

TFL, Nucleus and Breeder Seed production

- Ricebean (Bidhan Ricebean-1)
- Ricebean (Bidhan Ricebean-2)
- Ricebean (Bidhan Ricebean-3)

Management of BN hybrid

- BN hybrid (CO-3): 8500 cuttings
 BN hybrid (CO-4): 7400 cuttings
- BN hybrid (CO5): 6500 cuttings
- Multiplication and management of Guinea grass, stylo and drum stick
- Seed production of L7P1, L4P5, L6P1, L4P3 and L13P5 (promising mutant lines of Bidhan rice bean 1)

Externally Funded Project: 2 (Private Company) **Participation in seminar/farmers' meeting etc:**

- Farmers Meet on forage production technology with tribal families/farmers at Ela Batitaki and Rampura villages, Narayangarh block of Paschim Medinipur district.
- Participated as resource person and delivered lecture on "Modern Agronomic Management Technology" at Farmers' Training Programme under AICRP on Forage Crops & Utilization, BCKV, Kalyani at North 24 Parganas, Nadia, Bankura, Purulia respectively through online platform on google meet.

Awareness development on 'seed production' of forage crops: Seed production of Forage maize (cv. J 1006/African Tall) and ricebean (cv. Bidhan ricebean-2) by farmers for their own uses as seed for the next year.

Transfer of technology

- Distribution of Ricebean, Mungbean, Blackgram seeds to farmers for popularizing as legume cover crop for conservation of soil and water, nutrient enrichment and fodder production in drought prone areas of Nadia, South 24 Parganas, Jalpaiguri and Paschim Medinipur districts.
- Conducting on-farm trials/demonstration on forage production along with rice introducing the *Coix aquatica* and the model is acceptable to the farmers as they are getting forage in the low-lying areas of Nadia and South 24 Parganas district of West Bengal.
- Distribution of Ricebean and cowpea seeds to farmers for popularizing as an under canopy legume crop in nutrient enrichment and fodder production in the Mango, Banana, Litchi and Guava Orchards under different districts of West Bengal.
- Trainings to the farmers of different districts through online platform.

- Provided seeds of maize (cv. J1006), ricebean (Bidhan ricebean-1, Bidhan ricebean-2 & Bidhan ricebean-3), cutting of guinea & BN hybrid (cv. CO 3, CO 4 & CO 5) and Coix (cv. Bidhan coix-1) etc. to ICAR- CSSRI, Canning Town, South 24 Parganas and supplied breeder seed of Bidhan ricebean 2 to AICRP on FC & U, RPCAU, Pusa, Bihar, Agro-forestry Division, BAU, Ranchi, Jharkhand and KVK, Assam.
- Distributions of leaflets on forage crops among the farmers for dissemination of forage technology.
- Distribution of planting material (cuttings) of BN hybrid (Variety: CO 3, CO 4 & CO
 to the resource poor farmers in Bankura, Purulia, Paschim Medinipur, Nadia, North-24 Parganas, Cooch Behar, Burdwan and Hooghly districts etc.

Popular articles: 2 (in bengali)

Act as reviewer of research papers of Journal of Crop and Weed, BCKV, Mohanpur, Nadia, West Bengal-741252 and 'Oryza', NRRI, Cuttack, Odisha.

AICRP (FC&U), GBPUA&T, Pantnagar

TSP-Forage Crops

- 04 Tribal villages Tota Baria (Bajpur Block), Pachpera-Jhankat, Saroja and Pahseni (Sitarganj Block) were selected under TSP program and nearly 65 families were benefitted by providing free inputs i.e. forage seed and fertilizers for demonstration
- The field demonstrations 65 including on 20 on forage maize and 45 on forage sorghum were conducted during crop in *Kharif* season 2021
- The fertilizers including NPK and urea was also distributed among farming communities.
- Technical know-how and leaflets on forage crops were also distributed.

FTD conducted :25 (10 on maize and 15 on sorghum)

Farmers' Meetings : 13 Group discussions : 12

Radio Talks : $\mathbf{07}$ [Dr MS Pal -04, Dr B Prasad -03]

Participation in National Conference/Workshop: 07[Dr MS Pal – 02, Dr B Prasad – 05]

Teaching courses: 09[Dr MS Pal – 03, Dr B Prasad – 06]

Research Guidance:07 students [Dr MS Pal – 03, Dr B Prasad – 04]

Publications Books: 02

- Pal MS (2021). **Basic Mathematics and Altitude**. NIPA Publishing House, NewDelhi. 592p. (ISBN: 978-93-89907-02-5).
- Prasad Birendra. (2021). **All in one objective in Seed Science and Technology**. Jaya Publishing House (11 April 2021) New Delhi. ASIN: **LV25W0928B**. pp:340

Other publications

	- F			
SN	Item	Dr M S Pal	Dr B Prasad	Total
1	Research Papers	04	01	05
2	Popular articles	03	01	04
3	Research Report	02	-	02
4	Book Chapter	-	05	05
	Total	09	07	16

Other assigned duties

Dr MS Pal

- Program Coordinator (AICRP-FCU)
- PG (Family) Hostel Warden

Dr B Prasad

- Deputy Coordinator: RAWE (2020-21, 2021-22)
- Coordinator of JRF tutorial classes in Plant Science (2021)
- Deputy Coordinator, certificate course on Seed Production Technology for 3 months.

Revenue generated

SN	Crop	Variety	Seed quantity (q)	Rate Breeder seed/q	Total value (in rupees)
1	Oat	UPO-212	110.0	7250	797500.00
2	Cowpea	UPC-625,UPC-4200, UPC-8705 and UPC-628	1.8	12900	23220.00
				Total	820720 00

AICRP (FC&U), IGKV, Raipur

Externally Funded Projects (Rs. in lakh)

SN	Title	PI/Co PI	Funding source	Budget
1.	Demonstration and training on silage production	S. K. Jha, PI	VV fund	0.75
2.	Efficacy of Carfentrazone ethyl 40DF against sedges and broad leafed weed in DSR	S.K.Jha, PI	Sponsored	4.0
3.	bio-efficacy and phytotoxicity of BAS 625 04 H against grassy weed in transplanted rice and its residual effect on succeeding crop	S.K.Jha, PI	PPP (BASF India Limited)	6.0
4.	Study the effect of improved corn hybrids on the quality of silage"	S.K.Jha, PI	PPP (Bayer Crop Science Ltd)	3.0
5.	Accelerated Genetic gain in Rice (AGGRi Alliance) Marginal Environment (ME)	Sunil Verma, PI	IRRI	15.0
6.	Identification of genetically superior species/varieties Morphological and DNA marker based identification of Bamboo in C.G.	Sunil Verma, Co PI	RNBM	5.0
7.	Global Rice Array: India partnership to strengthen global phenomics networks	Sunil Verma, Co PI	IRRI	8.0
8.	Study the effect of improved corn hybrids on the quality of silage" (from Bayer Crop Science Ltd)	Sunil Verma, Co PI	PPP	3.0
9.	Demonstration, Training and Production of silage to accelerate milk production in Chhattisgarh	Sunil Verma, Co PI	RKVY, Govt of India	50 .0
10.	Mainstreaming rice landraces diversity in varietal development through genome wide association studies: A model for large-scale utilization of gene bank collection of rice	Sunil Verma, Co PI	DBT	96.0
11.	Development of superior haplotype based near isogenic lines (Haplo-NILs) for enhanced genetic gain in rice	Sunil Verma, Co PI	DBT	110.0

Teaching

	Cacilling						
	Level	Courses	Subject	Credit			
D	Dr S.K. Jha						
	PG	AGRON -501	Modern Concept in crop production	3(3+0)			
D	r.Sunil `	Verma					
	UG	ABT-5211	Food Safety and Standards	3(2+1)			
		ABT-5121	Fundamentals of Plant Biochemistry and Biotechnology	3(2+1)			
	PG	MBBD-508	Laboratory I: Biochemistry, physiology and analytical Techniques	3 (0+3)			
		MBBD-521	Molecular Breeding	3(3+0)			
		MBBD-528	Laboratory III: Molecular breeding, genomics & proteomics	3 (0+3)			
	PhD	MBB-601	Advances in Plant Molecular Biology	3(3+0)			
		MBB-605	Advances in Functional Genomics and Proteomics	2(2+0)			

Research Guidance

Subject	No of student registered
Agronomy (Dr S.K. Jha)	PG: Major advisor- 3, Co-advisor -6
	Ph. D.: Major advisor- 2
Plant Breading (Dr.Sunil Verma)	PG: Major advisor- 6, Co-advisor -9
	Ph. D.: Major advisor-1 Co-advisor-6

Linkage with other programmes and institutes: AICRP(Dryland), CARS, Jagdalpur, Bastar (Chhattisgarh), AICRP(IFS), KVK's of Chhattisgarh

Research Papers Published

Shesh J, Jha SK, Singh RK and Thakur S (2021) Effect of de-topping and nitrogen doses on economics of maize (*Zea mays* L.) Varieties *International Journal of Chemical Studies* 2021; 9(1): 2423-2425

Books Chapters

Jha SK, Verma Sunil and Jha Deepti (2021)Tribal welfare programme through AICRP-FC&U, IGKV, Raipur under Tribal Sub Plan in Chhattisgarh" Published in Glimpses of tribal sub plan activities of All India Coordinated Research Project on Forage Crops and Utilizatio published by AICRP-FC&U ISSN 978-81-948917-3-4

Extension Articles

Jha SK,Sahu RP and Verma SK(2021). gkbZM^aksiksfud rduhd ls pkjk mRiknu] [ksrh] ebZ 2021, ICAR, Jhansi, India. pp 4 to 6 ISSN No 0023-1088.

On line Training: Dr Sunil Verma

SN	Title of Programme	Duration	Organized by
1	Gender responsive plant breeding	12 days (17 th to 27 th	GREAT Project (Makerere
		May, 2021)	and Cornell University)
2	Smart Breeding technology for Next	04 Days (31 Aug-3 rd	CGIAR-IRRI-IGKV
	gen Plant Breeding	Sep, 2021)	collaboration
3.	Breeding innovation for crop	21 Days (20 Oct-16 th	ISARC, Varanasi
	improvement to enhance genetic gains	Nov, 2021)	
4	NagriyNikay election training	1 Day (16 Dec, 2021)	Election Commission
5	NagriyNikay election training	1 Day (22 Dec, 2021)	Election Commission
6	Attained meeting on Improvement of	1 Day (06 Aug, 2021)	DRS, IGKV, Raipur
	elight Rice varieties for GI		

Extension packages

- Generated package of practices of fodder crops production under Chhattisgarh Condition and published for Extension workers in university dairy published by Director Extension Services, IGKV, Raipur
- Published package of practices of fodder crops production in *Krishi Yug Panchang* 2021-2022 published by Director Extension Services, IGKV, Raipur
- Demonstrated the fodder *production technology in Agriculture Museum* at IGKV, Raipur published by Director Extension Services, IGKV, Raipur
- Developed *computer based programme* of fodder production technology for demonstration in museum
- Training for SMS, PC of KVK's on fodder production
- Training for REO, ADO, DDA of C.G. Government Agriculture department on fodder production
- Stat policy draft on round the year fodder production submitted to Chhattisgarh government for *Gothan* Development

New Seed production Farm

• New fodder seed production farm imitated at CARS, Bhatapara, KVK Mahasamund and KVK Durg with the help of local administration and RKVY.

Important visitor:

• Visit of Hon'ble V.C. IGKV, Raipur along with Directors, Deans, PC, SMS and scientist in forage demonstration block.

FTD's

• Fodder technology demonstration was conducted in Mahasamund, Bemetara and Raipur district of Chhattisgarh on fodder Maize perennial sorghum, BNH

Forage Garden

- Kharif Cowpea, Maize, Guar, Rice bean, Pearl millet, Sorghum, BN Hybrid, Dinanath grass, Guinea grass, Dhaman grass, Anjan grass
- Rabi –Berseem, Lucerne, Rye grass, Oat and Lathyrus
- Fodder tree and shrub of Munga, Albizia, Leucena, Desmenthus, Clitoria,

AICRP (FC&U), CAU, Imphal

Extension Activities

• Resource person: 3; Interaction programme: 6

FTDs conducted: 45 in kharif 2021 [Maize (20); Sorghum (20); Bajra Napier hybrid (5)

Research Guidance

• M. Sc. (Agri.) as Major Guide – one; M.Sc. as Co guide - Two

Courses taught

• Dryland agriculture, Cropping system, Geoinformative and precision farming and Heritage Agriculture.- Number of topics- 75

Publications - Bulletin - 1

Revenue generated: Sale of BxN slips - Rs 10,000

Inputs supplied

- Fodder maize seed, Hybrid Napier cutting, oats seed, Sorghum, chemical fertilizers, plant protection chemicals etc were supply to FTDs beneficiaries.
- Fodder seed (seasonal, perennial, perennial cutting etc) are made available at the AICRP on Forage Crops & Utilization, CAU, Imphal Centre.

University Assigned Activities

- Assigned as Co-PI in the Project Sustainable Livelihood Development of Farmers under Farmers FIRST Programme component.
- Assigned as Co-PI in the Project ICAR-IGFRI NEH Component Project.
- Assigned as Co-PI in the Project Identification of Climate resilient food crops, traditional rice varieties of Manipur and their production enhancement through Scientific manipulation having least impact to climate Change.
- Assigned as committee chairman and members in many programme by CAU, Imphal
- Also actively involved in many activities in the CAU Head Quarter and Directorate of Research office of CAU, Imphal

AICRP (FC&U), PAU, Ludhiana

Publications:

Research papers: (14)

- Amandeep, Kapoor Rahul and Singh Gurpreet (2021) Genetic variability and association study from exotic germplasm accessions in fodder oats (*Avena sativa L.*) Forage Res., 46 (4): 332-336.
- Atri Ashlesha and Cheema Harpreet Kaur. (2021). Field evaluation of sorghum genotypes against diseases and insect-pests. *Forage Research*. Accepted
- Atri Ashlesha, Cheema HK & Singh N (2021) Ecofriendly management of stem rot of berseem caused by Sclerotinia trifoliorum. *European Journal of Plant Pathology*. https://doi.org/10.1007/s10658-021-02273-0 (NAAS rating: 7.58)
- Bhardwaj NR, Atri A, Rani U, Banyal DK and Roy AK. (2021). Weather-based models for predicting risk of zonate leaf spot disease in Sorghum. *Tropical Plant Pathology*, 46: 702-713. https://doi.org/10.1007/s40858-021-00461-1(NAAS rating: 7.34)
- Hilli Harshvardan J, Kapoor Rahul, Amandeep (2021) Hybridization and factors influencing seed set in oat. *Indian J Agri. Res.* DOI: 10.18805/IJARe.A-5813.
- Kapoor Rahul (2021) Notification of crop varieties and registration of germplasm, Oat Variety-OL 1896. *Indian J. Genet. Pl. Breed.* 81 (4): 613. (NAAS rating: 6.55)
- Kapoor Rahul (2021) Notification of crop varieties and registration of germplasm, Oat Variety-OL 1876-2. *Indian J. Genet. Pl. Breed.* 81 (4): 611. (NAAS rating: 6.55)
- Kapoor Rahul (2021) Notification of crop varieties and registration of germplasm, Oat Variety-OL 1874 *Indian J. Genet. Pl. Breed.* 81 (4): 612. (NAAS rating: 6.55)
- Kaur AD and Goyal M 2021 Metabolic adjustments in forage oats (*Avena sativa* L.) genotypes under different sowing windows. *Physiology and Molecular Biology of Plants* 27: 2709-2725 {http://dio.org/10.1007/s12298-21-01118-8} (NAAS rating-8.39)
- Kaur AD, Goyal M, Kaur M and Mahal AK 2021 Interactive effect of planting dates and development stages on digestibility, qualitative traits and yield of forage oat (*Avena sativa* L.) genotypes. *Cereal Research Communication* https://doi.org/10.1007/s42976-021-00217-2 (NAAS rating- 6.85)
- Kaur Gagandeep, Kapoor Rahul, Sharma Priti and Srivastava Puja (2021) Molecular characterization of oats (*Avena sativa* L.) germplasm with microsatellite markers. *Indian J. Genet. Pl. Breed*.81(1): 144-147 (NAAS rating: 6.41)
- Kaur M, Oberoi HK and Ashlesha (2021). Interactive effects of fertility levels and genotypes on production potential, quality estimation and disease incidence of forage sorghum. *Forage Research* 47(1): 49-53.
- Kaur Maninder, Oberoi HK and Ashlesha (2021) Interactive effects of fertility levels and genotypes on production potential, quality estimation and disease incidence of forage sorghum. *Forage Research* 47(1): 49-53.

Kumari A, Goyal M, Mittal AD and Kumar R (2021). Defensive Capabilities of Contrasting Sorghum Genotypes against *Atherigona soccata* (Rondani) infestation *Protoplasma*https://doi.org/10.1007/s00709-021-01703-4 (NAAS rating-9.36)

Popular/Extension articles

- Kapoor Rahul and Kaur Maninder (November 2021). Hari vichbijojavi di vadherejhad den vali navikisam OL 15. *Vigiyanak Pashu Palan* 16(3): 19-20.
- Kapoor Rahul, Sohu RS and GoyalMeenakshi 2021. Grow new berseem and oats varieties. *Progressive Farming* 57 (10): 35.
- Kaur Maninder and Sohu RS (February 2022). Aaojaniye berseem de beezutpadandiyanbarikian. *Vigiyanak Pashu Palan* 16(6): 25.
- Singh Devinderpal and Goyal Meenakshi 2021. Hari vitchvadhkataian den valagairfalidarchara- Rai gha. *Vigyanik Pashu Palan*, 16(4): 10-11
- Singh Devinderpal, Goyal Meenakshi and Kaur Maninder 2021. Punjab ryegrass-2: A new variety of ryegrass for nutritious fodder. *Progressive Farming*, 57 (10): 18.
- Singh Devinderpal, Kaur Maninder and Oberoi Harpreet Kaur (January 2022). Garmiyan vich pashuan layi hare chariyan da suchaja prabandh. *Bahumantvi Kheti* 5(1): 10-13.
- Singh Devinderpal, Sohu RS and Kaur Maninder (January 2021). Berseem de beej utpadan sambandhi zaroori nukte. *BahumantviKheti* 4(10): 10.

Transfer of technology

Lectures delivered: Two lectures delivered to the young farmers on Production technology of *Kharif* and *Rabi* fodders.

Research Guidance: M. Sc.: 6; Ph.D.: 2

FTDs conducted: 20; Napier Bajra Hybrid (PBN 342) = 20

Seed/Planting material sold

Crop	Variety	B/S (q)	F/S (q)	C/S (q)	TL (q)	Total (q)
Cowpea	CL 367	0.20	1	1	1.30	1.50
Guinea Grass	PGG 518	0.20	ı	ı	3.00	3.20
Maize	J 1006	28.00	45.00	458.00	12.00	543.00
	J 1007	-	-	-	395.00	395.00
Bajra	FBC 16	2.10	6.90	38.00	11.00	58.00

External funded Projects: (2)

Project/Scheme	Funding Agency	Budget	PI/Co-PI
		(in Lacs)	
Breeding for development of baby	ICAR-Indian Institute of	109.59	Dr. Meenakshi
corn hybrids	Maize Research, Ludhiana		Goyal (Co-PI)
Development of low lignin mutants	CSIR, New Delhi	33.00	Dr Meenakshi
of sugarcane through mutagenesis			Goyal (Co-PI)
and genome editing approach			

AICRP (FC&U), SKUAST-K, Srinagar

Forage Technology Demonstration:Twenty (20) numbers of FTD's were conducted on Fodder Maize through concerned KVKs to promote location specific technologies during *Kharif* 2021.

Students Guided:

- M.Sc (Ag) in Agronomy -03 (01-Major Advisor & 02-Co-Advisor)
- M.Sc (Ag) in Seed Science and Technology -01 (Major Advisor)
- Ph.D (Ag) in Plant Breeding -01 (Major Advisor)

Publications

- Bhat RA, Ahmed Faizaan, Rashid Z & Others (2021). Evaluation of fodder Maize cv African Tall and its response to different rates of FYM and biofertilizers under cold arid conditions of Kargil. *International Journal of Plant and Soil Sciences*
- Faisul-ur-Rasool, Bhat MI, Dar ZA, Lone BA, Sofi LA, Hakeem SA, Rashid Z, Nasseer S, Bashir S, Nisa S, Majeed. (2021). Legume-Maize intercropping system: An alternative pathway for sustainable agriculture. *International Journal of Plant & Soil Science*. 33(16): 87-92.
- Fayaz A, Lone BA, Shilpa, Qayoom S, Dar NA, Dar ZA, Rasool F, Kumar S, Khuroo NS, Singh P and Andrabi N (2020). Calibration validation and evaluation of CERES Maize Model under temperate conditions of Kashmir, using DSSAT 4.7. *Current Journal of Applied Science and Technology*. 39(25): 1-7
- Iqbal Badar, Ahmed Mushtaq, Rashid Z. & others (2021). Problems faced by vegetable growers in District Budgam, J&K. Asian Journal of Agricultural Extension, Economics & Sociology
- Majid Shabeena, Kumar Amit, Nasseer Sabina, Bashir Sabiya, Mughal M. Najeeb, Dar Z A, Amin Asima, Rashid Zahida, Rasool Faisal and Hakeem Shafiq. (2021). Floral Biology of Exotic and Indigenous Almond (*Prunus amygdalus* Batsch.) Genotypes under Temperate Conditions of Kashmir Valley. *International Journal of Current Micro biology and Applied Sciences*. 10. (1):2807-2813 (NAAS rating 5.38)
- Nasseer Sabina, Rashid Zahida, Bashir Sabiya, Rasool Faisal, Majeed Shabeena, Seerat-un-Nisa, S Iqbalhahida, Habib Mehfuza, Nagoo Shahina and Dar ZA. (2021). Preliminary evaluation of Maize (*Zea mays* L.) hybrids for grain yield under temperate conditions. *Current Journal of Applied Science and Technology*. 40(24): 46-50.(NAAS rating 4.71)
- Nasseer Sabina, Shabeena M, Sabiya B, Zahida R, Seerat N, Dar ZA, Faisal R, Shahida I, Mehfuza H, Shafiq H, Shahina N and Gul Zaffar. (2020). Inheritance studies of aroma in aromatic Rice (Oryza sativa L.) of temperate areas of Kashmir valley. *Research and Reviews: A Journal of Biotechnology*.10 (3): 5-8
- Rashid Zahida, Khuroo NS, Ahangar Tanveer Ahmad, Majid Shabeena, Bashir Sabiya, Nasseer Sabina, Faisul-Ur-Rasool, Shafeeq H and Dar ZA. (2021). Precision Nitrogen management for enhancing yield and quality of fodder Maize. *International Journal of Plant & Soil Science*. 33(18): 236-241

Sabiya Bashir, Mohammad Najeeb Mughal, Zahida Rashid, Shabeena Majid, Sabeena Naseer, Zahoor A. Dar, Shafeeq A. Hakeem and Faisal Rasool. (2021). Screening of French Bean (Phaseolus vulgaris L.) Genotypes against Alternaria Leaf Spot Caused by (Alternaria alternata) under dryland conditions of Kashmir. International Journal of Plant & Soil Science. 33(23): 25-30

Zahida Rashid, Tanveer Ahmad Ahngar, Sabiya B, Sabina N, Khuroo NS, Shabeena M, Rakshanda A, Bhat Raies A, Faisul-Ur-Rasool, Shafeeq H, Dar ZA and Seerat Jan. (2021). Influence of plant growth regulators and micronutrients on growth, yield and quality of Sorghum under temperate conditions. *International Journal of Experimental Agriculture*. 43 (9):18-23.

Manuals Published

- Protection of Plant Varieties & farmers Rights Act (An Overview): as contributor
- A Practical manual of precision agriculture: as contributor
- Field manual on profitable maize cultivation: as contributor
- Maize for fodder under temperate ecologies of Kashmir valley: as contributor

AICRP (FC&U), RPCAU, Pusa

Resource person: Dr. Nilanjaya delivered lecture as expert on the topic *Bihar Pradesh ke liye upyukt chara faslein, prajatiyan evum bij keshrot* in an online training programme conducted by IGFRI, Jhansi for Gaushalas on 27-28th July, 2021.

Research Guidance

- Dr. Nilanjaya one M.Sc. student and one Ph.D. student on Forage Oat and Forage cowpea, respectively
- Dr. Gangadhar Nanda, Agronomist has guided one M.Sc. student who worked on Fodder Oat and currently guiding/co-guiding three M. Sc. Students who are doing their Master's research work on Fodder pearl millet and Fodder Oat.

Teaching

- Dr. Nilanjaya is having course load of nearly 20 credit hours per semester along with additional assignment of Officer-In- Charge (Academic) of Deptt. of Plant Breeding and Genetics as well as PG College of Agriculture (PGCA).
- Dr. Gangadhar Nanda is having course load of nearly 15 credit hours per semester along with additional assignment of Officer-In- Charge Fodder production at APRI, RPCAU, Pusa.

Golden Jubilee Forage Garden: Golden Jubilee Forage Garden was maintained at RPCAU centre consisting of 50 annual, perennial and fodder trees.

Popular article: One popular article entitled "रबी में हरे चारा फसलों की वैज्ञानिक खेतीः आत्मनिर्भर पषुपालक" were published in Adhunik Kisan magazine of RPCAU, Pusa.

AICRP (FC&U), BAIF, Urulikanchan

Kauthale VK, Patil SD and Takawale PS(2020) Influence of cutting- management practices for green fodder and grain production in dual-purpose forage crops. *Indian Journal of Agronomy* 65 (3): 348-351

Jade SS, Takawale PSand Bahulikar RA (2021). The utility of ISSRs for the identification of interspecific hybrids between pearl millet (*Pennisetum glaucum* [L.] R. Br.) × Napier grass (*Pennisetum purpureum* Schumach) *Plant Genetic Resources: Characterization and Utilization*; 19 (2): 104-111

Important persons visit to AICRPFC centre

- 1. Dr. Ashok Kumar, Director, NBPGR, New Delhi
- 2. Dr. P. K. Pujari, Director, RC&IG, BARC, Mumbai

Fodder Technology Demonstrations (FTDs):25 Fodder Technology Demonstrations (FTD) were organised in three crops namely Forage bajra, B x N Hybrid and forage cowpea. Ten each FTDs of BAIF Bajra-1 and BAIF Napier Hybrid-11 and five of forage cowpea var. EC 4216 were established at farmers field on 0.20 ha area in four blocks of Pune district. Monitoring of the demonstrations was done time to time and the data on green fodder yield was generated through field visits by Technical staff of the project.

TSP activities

BAIF centre is actively engaged for the implementation of Tribal Sub Plan activity. The activity was under taken in four villages namely, Ozarde, Pimparipada, Ambapur and Kalamba in Nandurbar district. Initially the village level meetings were organised for the farmers to make aware them about TSP activity and identify the needs of farmers. Based on that the activities were planned which included raising of B x N hybrid (BNH-11) nursery, supply of farm inputs like seed, fertilizer etc.), small equipment and machineries, microirrigation unit, Training and capacity building of farmers. In all fifty tribal farmers have participated in the activity.

During the period, forty nurseries of BNH-11 were established at farmer's field. They were provided with planting material, Bioprom and chemical fertilizers through the project support. Field training programme were arranged for 50 farmers on preservation technologies particularly the silage making.

Training conducted: Delivered online webinar on "Fodder Resource Development" and around 70 representatives of various organization including BAIF were attended it.

Seed/ planting material sold

Foundation and Truthful seed production activity of maize African Tall, BAIF Bajra-1 and cowpea var. EC 4216 was undertaken as organizational activity. Technical inputs for quality seed production were given by scientific staff of the project.

During the period24.31q seeds of different fodder crops and 4.27 lakh planting material of cultivated perennial grasses was sold to the farmers by the organization.

AICRP (FC&U), CSKHPKV, Palampur

Awards/ Recognitions

Dr. D K Banyal

- Fellow Indian Society of Plant Pathologist 2021
- Member Indian Phytopathological Society Award Preliminary Evaluation Committee 2021

Dr. Naveen Kumar and Dr. D K Banyal

Member Editorial Board Himachal Journal of Agricultural Research

Research publications

- Arora A, Sood VK, Chaudhary HK, Banyal DK, Kumar S, Rajni D, Kumari R, Khushbu A, Priyanka and Yograj S(2021). Genetic diversity analysis of oat (*Avena sativa* L.) germplasm revealed by agro-morphological and SSR markers. *Range Mgmt. & Agroforestry* 42 (1): 38-48
- Bhardwaj NR, Atri A, Rani U, Banyal DK and Roy AK. (2021). Weather-based models for predicting risk of zonate leaf spot disease in Sorghum. *Trop. Plant Pathol.* https://doi.org/10.1007/s40858-021-00461-1(NAAS 7.34)
- Katoch Rajan and Tripathi Ankur (2021) Research advances and prospects of legume lectins. *Journal of Biosciences* 46:104 (1-30).
- Katoch Rajan, Tripathi Ankur, Hallan Vipin and Raj Ritu (2021). Cloning, characterization, expression analysis and agglutination studies of novel gene encoding β-D-galactose, *N*-acetyl-D-glucosamine and lactose binding lectin from ricebean (*Vigna umbellata*). Molecular Biotechnology. https://doi.org/10.1007/s12033-021-00410-y.
- Kumar N, Anuragi H, Rana M, Priyadarshini P, Singhal R, Chand S, Indu S, Sood VK, Singh S and Ahmed S. (2021). Elucidating morpho-anatomical, physio-biochemical and molecular mechanism imparting salinity tolerance in oats (*Avena sativa*). *Plant Breeding* 140(5): 835-850
- Kumar Naveen, Banta Nitish, Chahal Arvind, Kantwa SR and Singh Sukhchain.(2021). Production potential of dual purpose winter cereals as influenced by cutting management under mid hill conditions of Himachal Pradesh*Forage Res.* 47 (2):187-192
- Kumari A, Sood VK and Arora A. (2021). Effect of drought stress on physio-biochemical parameters in *Festuca* and *Lolium* genotypes. *Annals of Phytomedicine* 10(2): 494-501
- Mawar R, Mathur M, Rani U, Banyal DK, Awasthi DP and Roy AK. (2021). Effect of biological and chemical treatments on root rot incidence on cowpea and relationship with climatic parameters. *Multilogic in Science*. 12: 55-60
- Priyanka, Sood VK, Rana A and Kumar S. (2021). Genetic divergence among oat (*Avena sativa* L.) genotypes under dual purpose and seed yield related systems. *Biological Forum- An International Journal* 13(4): 1163-1169
- Rana A, Sood VK, Priyanka and Kumar S. (2021). Heterosis in oat (*Avena sativa* L.) for various agro-morphological, yield and quality traits. *Biological Forum- An International Journal* 13(4): 1149-1157

Symposiums/conferences

- Banyal DK and Mallannavara AB (2021). Oat powdery mildew caused by *Blumeria graminis* and its management. In National Symposium on Strategic Plant Disease Management for Food security organized by INSOPP at CPRI Shimla on 6-7th December, 2021.
- Kumar Naveen, Agrawal RK and Sharma Tarun. (2021). Productivity and quality of fodder maize genotypes under different nitrogen management under sub- humid & sub-temperate rainfed conditions. 5th International Agronomy Congress, November 23-27, 2021, India: pp: 880-881
- Kumar Naveen, Agarwal RK, Singh Sukhchain and Thakur Deeksha. (2021). Effect of phosphorus levels on performance of promising entries of forage cowpea. 5th International Agronomy Congress, November 23-27, 2021, India: pp 861-862
- Priyanka, Sood VK, Kumar S, Rana A and Sanadya SK. (2021). Minimum data set to improve seed and fodder yield in Oat. In: Abstracts: 3rd International Conference on "Global Initiative in Agricultural, Forestry and Applied Sciences for Food Security, Environmental Safety and Sustainable Development (GIAFAS-2021)". October 17-18, 2021, Dehradun, Uttarakhand, India. P.435
- Priyanka, Sood VK, Rana A, Gupta C, Verma S and Arora A. (2021). Biochemical evaluation of oat genotypes for β- glucan content and powdery mildew resistance. In: Abstracts: International conference on Future Challenges and Prospects in Plant Breeding. October 6-7, 2021, Coimbatore, P.129
- Rana A, Sood VK, Priyanka, Gupta C, and Chaudhary HK. (2021). Assessment of genetic diversity and combining ability estimates in oat (*Avena sativa* L.) for agromorphological, yield and quality traits. In: Abstracts: International conference on Future Challenges and Prospects in Plant Breeding. October 6-7, 2021, Coimbatore, P.198

Participation in Seminar/ Workshop/ Group meetings

- Dr DK Banyal, attended National Symposium on Strategic Plant Disease Management for Food security organised by INSOPP at CPRI Shimla on 6-7th December, 2021.
 Acted as Co Chairman in Technical session – II and also presentation oral paper on Oat powdery mildew caused by *Blumeria graminis* and its management.
- Drs. Naveen Kumar, V K Sood, D K Banyal and Rajan Katoch attended
 - o NGM of AICRP-FCU (*Rabi*) on 20th September 2021 through online mode.
 - o Agriculture officer's workshop *Rabi* during 28.12.2021 in the Directorate of Extension education, CSKHPKV, Palampur.

Courses taught

Course No	Course Title	Cr. Hr.
Agron510	Agrostology and Agroforestry	2+1=3
LPM 121	Livestock Management	1+1=2
GP-509	Biotechnology for Crop Improvement (Shared)	2+1=3
GP-603	Genomics in Crop Improvement (Shared)	2+1=3
GP 591	Master's Seminar	1+0= 1
GP 691	Doctoral Seminar	1+0= 1
Pl Path 518	Epidemiology and Forecasting of Plant Diseases	2+1=3
Pl Path 605	Principles and Procedures of Certification	1+0= 1
Biochem.121	Plant Biochemistry	1+1=2
Biochem.502	Plant Biochemistry	3+0=3

ent of Animal Husbandry, HP
FS); AICRP (Agroforestry)

Association in *Adhoc* Projects

Association in Autoc 11 ofects			
Title of the research project	Funding	Budget	Associated
	agency	(lakhs)	scientist
Assessment, validation and refinement of disease	JICA	30.0	Dr. D K
management technology for vegetable crops" from Japan			Banyal (PI)
International Cooperation Agency – JICA for 30 lakhs			
Mapping of geographical distribution and identification of	DST	55.57	Dr. D K
new invasive spp. of insects-pest and diseases, simulated			Banyal (Co-
futuristic crop water foot prints scenarios for Major Crops, in			PI)
Himachal Pradesh			
Propagation of planting stock of perennial high yielding grass	Govt. of	5.54	Dr Naveen
species, fodder trees and their further dissemination on	HP	crore	Kumar
farmers' fields as well as Gosadans' in the state			(PI)
Revolving funds	CSKHPKV	≈ 5-6	Dr. Naveen
- Mega seed project (forage seed production)		/year	Kumar & Dr.
- Production of seed and seedlings of improved grasses			V K Sood
and legumes			

AICRP (FC&U), KAU CoA, Vellayani

Publications *Journal Papers* - 5

- Usha CT, Agrawal RK, Anita MR and Mubeena P (2021). Carbon sequestration potential of grass based fodder production systems in humid tropics of Kerala. *Range management and Agroforestry* 42(1):104-109 (NAAS rating-6.37)
- Sruthy LT and Usha CT (2021). Standardization of seed rate and harvesting schedules for fodder crops grown under hydroponics system. *Range management and Agroforestry* 42(1):137-142 (NAAS rating-6.37)
- Mubeena P, Usha CT and Deepa Surendran (2021). Nutritional evaluation of predominant fodder trees and shrubs of Southern Kerala as a quality livestock feed. *Agricultural Science Digest-*.p.1-5
- Arya S Nair and Gayathri G (2022). Optimization of doses for Ethyl Methane Sulphonate (EMS) and analysis of M1 generation of fodder cowpea [Vigna unguiculata (L.) Walp]. Pharma Innovation 11(2):593-598
- Amritha Varanya, Gayathri G, Arya K, Usha C Thomas, Pratheesh P Gopinath and Hulsure Priyanka. (2022). Genetic variability and genetic parameters analysis of 143 fodder cowpea [Vigna unguiculata (L.) Walp] germplasm accessions for yield and yield attributing traits. Pharma Innovation 11(2):2595-2600

Books-1

'Fodder crops- a handbook' in Malayalam for publication from KAU as a part of the Golden Jubilee celebration of KAU,2021

Popular articles. malayalam-3

- Fodder cowpea, page.no.57-58, Karshakan August 2021
- Ksheeravijayathinu kaalitheettavilakal in Malayalam, Pg. 18-20, Karshakan- August 2021
- Azolla as cattle feed –page no-35-36. Kerala Karshakan August 2021

Conference papers-5

- Mubeena P and Thomas Usha C (2021). Quality characteristics of major tree fodders in kerala as a ruminant feed. Second international web conference on Smart agriculture for resource conservation and ecological stability. ANRCM, India. Page no.79
- Navya MV, Deepthi C and Thomas Usha C.(2021).Influence of varying levels and frequency of application of Magnesium nutrition on yield attributes of Bajra napier hybrid. Second international web conference on Smart agriculture for resource conservation and ecological stability.ANRCM, India. Page no.80
- Deepthi C, Navya MV and Thomas Usha C.(2021). Performance of bajra napier hybrid varieties under varying shade levels. Second international web conference on Smart agriculture for resource conservation and ecological stability.ANRCM, India. Page no.49
- Varanya Amritha, Gayathri G. Arya K., Thomas Usha C and Gopinath Pratheesh P.(2021). Principal Component Analysis for seedling characters in Fodder Cowpea [Vigna unguiculata (L.) Walp]. In: Book of abstracts of the International Conference on Future Challenges & Prospects in Plant Breeding (FCPPB 2021), 6-7 October 2021, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, p. 74. Abstract No. PP1068
- Nair Arya S, Gayathri G, Arya K, Thomas Usha C and Thomas Beena.(2021). Effect of mutagenesis on seed parameters in M2 generation of fodder cowpea [Vigna unguiculata (L.)Walp]. In: Book of abstracts of the International Conference on Future Challenges & Prospects in Plant Breeding (FCPPB 2021), 6-7 October 2021, Tamil Nadu Agricultural University, Coimbatore, p. 167. Abstract No. PP4059

Farmers Training classes handled as resource person-3 - Dr. Usha C Thomas

- Fodder crop production- online organized by TSS, CoA, Vellayani on 4.02.2022
- Fodder crop production- online organized by Department of Agronomy, CoA, Vellayani on 11.02.2022
- Scientific fodder production offline As a part of the Technology Week 2021-22 of KVK Wayanad on 27.12.2021 – 60 farmers participated

Scheduled caste sub plan (SCSP):Distributed fodder cuttings to each of the 25 beneficiary on 15.02.2022 in the Parakkode block in Kollam district

Tribal subplan programme(TSP)

District	Activities	ST population benefitted (number)
Wayanad	Training on Fodder cultivation	60
	Distribution of layer hen(420 numbers)	60
	Distribution of Fodder cuttings	15
	Distribution of Kid goats	17
	Distribution of Spades	30
	Distribution of Sprayers	7

TV live Programme-1 on topic Fodder cultivation on 29.10.2021 at 6.00 pm – Krishidarshan **Radiotalk- 1-**Role of fodder grasses in soil and water conservation on 5.09.2021 at 6.50 pm **Research guidance**

- PhD in Agronomy- 2
- M.Sc. (Agri.) in Agronomy-3
- M.Sc. (Agri.) in Plant Breeding and Genetics-4
- M.Sc. –Integrated Biotechnology-1

Teaching- Courses

Dr. Usha C Thomas

- Agro1101- Introductory Agro-meteorology & Climate change(1+1)-
- Agron 605- Irrigation management(2+1)
- DOF1101- Introductory Agriculture (1+0)

Dr. Gayathri G

- Pbgn3205 Intellectual Property Rights (1+0)
- Pbgn2204 Crop Improvement-2 (1+1)
- Pbgn 1102- Principles of Genetics and Cytogenetics (Old Scheme) (2+1)
- GP520- Genetics (Remedial course for M.Sc.(Ag.Stat.)(2+0)
- GP518- Breeding of Tropical Crops(1+1)
- GP605- Advanced Plant Breeding Systems (2+0)

Other externally funded projects

- Revolving Fund scheme on 'Planting material production in fodder crops', funded by KAU PI Usha C Thomas
- Kerala State plan project 2020-21 on 'Performance Evaluation of Promising Fodder Varieties in Different AEUs in Kerala' PI Dr. Usha C Thomas
- Kerala State plan project 2020-21 on 'Identification of *Stylosanthes* species for yield and quality suited for cultivation in Kerala' PI Dr. Gayathri G

Additional Duty

- Dr.Usha C Thomas as Assistant Warden, UG Ladies Hostel, College of Agriculture, Vellayani
- Dr.Usha C Thomas as the member of district level monitoring committee of State Horticulture Mission
- Dr. Gayathri G Assisting Academic Officer (UG) in day-to-academic matters of UG students and nodal officer for KSHEC Higher Education Survey 2018-19

HRD- Participation in Trainings

• Dr. Gayathri G attended a workshop on Data Analysis and Hands on Training in Statistical Methods conducted by the Department of Agricultural Statistics, CoA, Vellayani from 02/09 to 04/09

AICRP (FC&U), MPKV, Rahuri

Publications Research papers

- Magar PH, Damame SV and Pathan (2021). Effect of cutting management and nitrogen levels on silage quality and yield of maize. *Forage Res.* 47(3): 320-324.
- Bhapkar SP, Surana PP, Shinde VB and Shinde GC (2021) Characterization and variability studies for green forage yield and associated traits in Forage cactus (*Opuntia spp.*)Forage Res. (47) 3: 292-298
- Gaikwad S.A, Kulkarni SR, Landge SA and Wasu RS (2021) Effectiveness of biopesticides against oat aphid, *Rhopalosiphum padi* L.*International Journal of Chemical Studies* 9(1): 2629-2633
- Gaikwad SA, Landge SA, Bhute NK and Pathan YK (2021) Seasonal incidence of aphid (*Rhopalosiphum padi* L.) and its natural enemies on forage oat (*Avena sativa* L.) *The Pharma Innovation Journal* 10(11): 241-245

Popular articles

- Surana Prasanna, Landge Sandip & Shinde Vijaykumar (2021). "Rabi Hangamatil Chara Pike" 'Shri Sugi Rabi-2021' September, Page No.23-25.
- Surana Prasanna, ShindeVijay kumar and Andhale Mangal (2021). "Kharif Hangamatil Chara Pikanche Vyavsthapan" 'Shri Sugi Kharif-2021' June, Page No.46-48.

Visits of important persons to AICRP FC, MPKV, Rahuri centre

- Hon.Bhagat Singh Koshyari, Governor of Maharashtra state and Chancellor, MPKV, Rahuri visited the exhibition stall of Forage and Grasses at ATIC Centre on 28.10.2021
- Dr. S. R. Gadakh, Director of Research, MPKV, Rahuri, Dr. V. L. Amolik, Head, Department of Botany, MPKV, Rahuri Dr. R. S. Wagh, ADR, MPKV, Rahuri and Dr. Vasant Pokharkar, DDR, MPKV, Rahuri visited forage project as on 8.10.2021 and 20.01.2022.
- Dr. C. S. Patil, Head, Department of Entomology, MPKV, Rahuri Visited Forage Project as on 27.01.2022
- Shri. Pramod Lavhale, Registrar, MPKV, Rahuri Visited Forage Project as on 19.01.2022

Establishment of Forage Garden: Established Seventy three different varieties of perennial Kharif and Rabi forage crops for Forage Garden at Rahuri Center under the guidance of Project Coordinator, IGFRI, Jhansi

Research Guidance

- Prof. P.P.Surana:01 M.Sc. (Agri.) student in Plant Breeding
- Dr. S. V. Damame: 01 M. Sc. (Agri.) student in Biochemist
- Dr. S.A. Landge: 01 M. Sc. (Agri.) student in Entomology

A) Training/Seminar Attended:

- a. Dr. S. A. Landgeattended three weeks online training programme on "Weather Based Agromet Advisory Services through ICT" organized by Center for Advanced Agriculture Science and Technology (CAAST) for Climate Smart Agriculture and Water Management (CSAWM), MPKV, Rahuri under NAHEP of ICAR new Delhi during w.e.f. 02.08.2021 to 22.08.2021
- b. Attended the five day training on Honeybee at CBRTI, Pune during 04/10/2021 to 08/10/2021

TV/Radio talks

- Radio talk:04
- Lectures to farmers in training programme: 04

Seed Production Programme-Kharif-2021

SN	Crop (Variety)	Stage of seed	TargetAre a (ha)	Actual Sown Area(ha)	Target (q)	Quantity Produced (q)
1	Maize	Nucleus	0.10	0.15	1.00	In field
	(African Tall)	Breeder	1.00	1.40	10.00	11.55
		Truthful	1.00	1.00	10.00	14.40
2	Cowpea	Nucleus	0.05	0.05	0.04	0.04
	(Shweta)	Breeder	0.05	0.05	0.50	0.05
		Truthful	0.15	0.20	1.50	1.00
3	Cowpea (EC-4216)	Breeder	0.80	0.80	2.00	5.00
4	Bajra (Giant Bajra)	Nucleus	0.10	0.10	0.07	0.05
		Breeder	0.30	0.20	0.20	0.07
		Truthful	2.50	0.40	0.40	2.45

Farmers and Govt. Staff of Agril. Department of Maharashtra State

No. of Farmers visited to farm during *Kharif* 2021 : 130
No. of Govt. officers/staff visited *Kharif*-2021 : 15

Product Testing of Forage Crops during Kharif 2021

SN	Company	Crop	Particulars	No. of sample
1	Crystal Crop Protection,	Sorghum	Fodder quality of sorghum	10
	Aurangabad		hybrids.	
2	Bayer Crop Sci. Ltd, Thane	Maize	Field Testing Trial of Fodder	01
			Maize hybrid	
3	UPL Ltd Mumbai	Maize	Efficacy of different	03
			insecticides against Fall Army	
			Worm	
4	UPL Ltd Mumbai	Maize	Field Testing Trial of Fodder	01
5	Nuziveedu seeds Ltd. Telangana	Maize	Maize hybrid	01
6	Bayer Crop Sci. Ltd, Thane	Maize		01
7	C.P.Seeds (i) Pvt. Ltd, Bangalore	Maize		02

AICRP (FC&U), PJTSAU, Hyderabad

Research papers

- Vijay Kumar P, Balazzii Naaiik RVT, Rajkumar BV, Swetha M, Bhavya manjari M (2021) Front line demonstration on IPM and Non-IPM approaches against the incidence of pod borer complex in pigeon pea in Northern Telangana Zone. *Journal of Entomological research* 45(1):115-118
- Manjari MB, Balazzii Naaiik RVT B, Rajkumar BV, Swetha M, Kumar PV, Suresh, M, Mohan M and Veni CP (2021) Performance assessment of work efficiency of easy transplanter for reducing drudgery among farm women while transplanting of tomato seedlings. *Multilogic in Science*. 10(36): 1613-1618.

Popular articles

- Shashikala T, Shanthi M, Balazzii Naaiik RVT, Shailaja K and Sukruth Kumar T (2021) Paadi rythula palita varum-Hydroponics paddathilo pashugrasa sagu. *Vyavasayam* 7(11):42
- Sukruth Kumar T, Balazzii Naaiik RVT and Shashikala T (2021). Vesavilo pashugrasa jonna sagu. *Vyavasayam* 7(2):41
- Shanthi M, Shashikala T, Sushila R, Balazzii Naaiik RVT and Sukruth Kumar T (2021) Hydroponic paddathilo pashugrasa uthpathi-Nanyatha *Vyavasayam* 7(2):42
- Suresh M, Balazzii Naaiik RVT, Rajkumar BV, Vijay Kumar P, Swetha M, Bhavya Manjari M & Mohan M (2021) Nelanu sajeevamgaa unchandi nela jeeva vaividhyanni rakshinchandi *Rythu bandhu* (11) 03: 14-15.
- Srilaxmi B, Balazzii Naaiik RVT,Rajkumar BV, Suresh M, Swetha M, Bhavya Manjari M, Vijay Kumar P & Mohan M (2021) Maamidi Putha dashalo paatinchavalasina jaagrattalu *Rythu bandhu* (11)03: 16-17.
- Mohan M, Balazzii Naaiik RVT,Vijay Kumar P, Rajkumar BV, Swetha M, Bhavya Manjari M, & Suresh M (2021) Manchi neeti chepalalo vacche saadhaarana vyadhulu yajamaanya paddatulu *Rythu bandhu* (11)03:10-11.

Details of FTDs distributed during kharif 2017-18

S. No	Crop	No. of FTDs
1	APBN-1	21
2	Cowpea	06
3	Maize	20
4	Bajra	05
	Total	52

Tribal Sub Plan: Organized one (01) field day in NagarKurnool and training given on Maize Fodder production techniques and Perennial fodder production techniques to 200 farmers

Conferences attended: All staff members attended following conferences

SN	Date	Title	symposium/ conference
1	12-14 July 2021	National Initiative for Accelerating Fodder	ICAR, IGFRI, Jhansi
		technology Adoption	
2	16-19 September	Global conference on innovative	ASM Foundation, New Delhi
	2021	approaches for enhancing water	& PJTSAU, Hyderabad
		productivity in Agriculture including	
		horticulture	
3	25-27 November	Agri Innovations to Combat Food and	Indian Society of Agronomy
	2021	Nutrition Challenges	and PJTSAU

Meetings attended

Scientist	Meeting	Date	Venue	
Dr.RVT.Balazzii Naaiik	ZREAC 2021	26-27 April, 2021	RARS, STZ, Palem	
Dr.T.Shashikala	ZREAC 2021	23-24 March, 2021	RARS, NTZ, Adilabad	
Dr.T.Sukruth kumar	ZREAC 2021	26-27 March, 2021	RARS, CTZ,	
			Warangal	
	National seminar on Seed	6-7 October, 2021	On lineby TSSDC,	
Dr. T.Shashikala	production – Quality		Govt of Telangana	
All scientists	State Level Annual	1-2 May, 2021	On line	
	Workshop meeting			
All scientists	attended kharif NGM	1 June, 2021	online	
All scientists	attended rabi NGM	20 September, 2021	On line	
Dr.RVT. Balazzii Naaiik Pre-ZREAC meeting		3-4 March, 2021	at RARS, Palem	
& Dr.T.Sukruth Kumar				
Dr.T.Shashikala Pre-ZREAC meeting		1-2 March, 2021	at RARS, Palem	

TV Programmes

SN	Scientist	Title of programme	Channel	Telecast date
1	Dr.T.Shashikala	Vesavi pasugrasa pantala sagu	DD Yadagiri, live-in	27.01.21
2	Dr.T.Shashikala	Pasugrasa pantallo kothha rakalu-Sagu suchanalu	DD Yadagiri live in	20.05.21
3	Dr.T.Sukruth kumar	Silage pramukyatha	T Sat live in	27.09.21

Important persons visiting the centre

• **20.08.2021:** University Head, Department of Agronomy Dr. Venkata Ramana visited our centre for technical inspection.

- **14.01.2021**: Dr.A.K.Roy, Project Coordinator visited our centre for monitoring. Visited FTDs as well as field trials during the stay.
- **02.02.21**: Visit of Associate Director of Research, STZ, Dr. Dhamodhar Raju on technical inspection.

Student Guidance/Teaching

S.No	Major advisor	Minor advisor	Courses taught
Dr.T.Shashikala	1	-	-
Dr.RVT.Balazzii Naaiik	1	1	-
Dr.T. Sukruth Kumar	1	2	1

Guest lectures

SN	Scientist	Organizers	Topic of lecture	Venue	Date
1	Dr. T.	RFC,	Enhancement of	RFC,	24.02.2021
	Shashikala	Pahadisharif,	fodder production	Pahadisharif,	
		Hyderabad	for the farmers	Hyderabad	
2			Enhancement of		15.03.2021
			fodder production		

25-28.11.2021: Exhibited a stall on fodder crops on occasion of International Conference held by Indian Society of Agronomy at PJTSAU.

AICRP (FC&U), OUAT, Bhubaneswar

Research Publication

Dhal P, Sahu G, Dhal A, Mohanty S and Dash SK (2021). Priming of Vegetable Seeds: A review. *The Pharma Innovation Journal* 11 (2): 519-525

Presentation in seminar

Dhal P, Dash SK, Mohanty S and Dhal A (2021). Influence of Plant Growth Regulators on Seed Health and Vigour in Okra. Presented in 6th International Conference in Hybrid mode on GRISAAS-2021; on December 13-15, 2021 at SKRAU, Bikaner, Rajasthan

Teaching - Dr. Arabinda Dhal

- Fundamentals of Plant Pathology PPT-121 BSc (Ag) 1st Year 2nd Semester (Credit Hours: 2+1) Practical only
- Integrated Pest & Disease Management PPT-312 BSc (Ag) 3rd Year 5th Semester (Credit Hours: 2+1) Theory
- Diseases of Field & Horticultural Crops-I PPT-313 BSc (Ag) 3rd Year 5th Semester (Credit Hours: 2+1) Theory
- Diseases of Field & Horticultural Crops and their management-II PPT-324 BSc (Ag) 3rd Year 6th Semester (Credit Hours: 2+1) Theory

Students Guided: MSc Ag in Plant Pathology – 1

Management of root rot and wilt disease in forage cowpea and its effect on nodulation by K.M.Bhawani – Chairman: Dr. Arabinda Dhal

Other Activities of Dr. A.Dhal

- Assistant Warden, Hostel No. 2, OUAT, Bhubaneswar
- Executive Member Literacy Society, College of Agriculture, Bhubaneswar
- Training Programme on "Disease symptoms & effective management in pulses and oilseed crops, organized by SITE, Government of Odisha on 15.11.2021 and 10.01.2022- By Dr. A.Dhal
- Impart Rabi training programme to FTAs of KCC as resource person on 10.11.2021 organized by Dean, Extension Education, OUAT, Bhubaneswar
- Participated in 29th Annual Conference of Agricultural Economics Research Association on the topic "Public Policies and Agricultural Transformations in India" on 27-29th October 2021 organized by Department of Agricultural Economics, OUAT, Bhubaneswar

Change in Directory

Orissa University of Agriculture & Technology, Bhubaneswar-751003 (Odisha)				
Dr. Arabinda Dhal	Jr. Pathologist	09937193430	foragebbsr@gmail.com	
Dr. S. Sahu	Dean of Research	0674-2397692	deanresearch_03@hotmail.com	

AICRP (FC&U), AAU, Anand

Region specific Crop Production technologies generated: Following recommendations for the farmers communities have been made in the SAUs Joint Combined AGRESCO meetings.

- The farmers of middle Gujarat agro-climatic zone, For effective weed management with better seed yields as well as net return in oats for seed purpose can be achieved by one hand weeding at 20 DAS fb IC at 40 DAS or pre emergence application of pendimethalin @ 0.9 kg ha⁻¹ fb provide effective weed management. (2016-17)
- BN Hybrid + Lucerne based perennial cropping system is recommended which fetched higher net monetary return and BC ratio. (In Central Zone). (2016-17)
- The farmers of middle Gujarat agro-climatic zone growing lucerne (Anand 2) are advised to have last cut of green forage at 3rd or 4th week of February and leave for seed production, followed by foliar spray of 0.02% boron at flower initiation stage and 2nd spray at 10 days after 1st spray along with all recommended practices to get higher yield and net return. (2017-18)
- The farmers of middle Gujarat agro-climatic zone growing guinea grass are advised to grow variety Co (GG) 3 and apply 50 kg N/ha after each cut upto three years to obtain higher green forage, dry matter, crude protein yields and net return. (Basal dose of FYM 10 t/ha, 50 kg N/ha and 40 kg P₂O₅/ha should also be applied). (2017-18)
- The farmers of Middle Gujarat agro-climatic zone growing multi cut forage sorghum variety CoFS29 for seed production purpose are advised to apply 40 kg N/ha and 40 kg P2O5/ha as basal and 120 kg N/ha in three equal splits each at 30 days after sowing, at 50 DAS (i.e., after first cut) and at 30 days after first cut for obtaining higher seed yield and net return. (2018-19)

Bio-chemical analysis of forage plant samples for quality evaluation during kharif-2021

Total 4370 Forage plant samples were analyzed for quality evaluation of different trials of Plant breeding and Agronomy of Main Forage Research Station, Anand as well as Godhra and Bikaner centre center during the *Kharif* -2021 season of year.

Discipline	Total No. of		No. of samples analysed for									
	Expts.	DM%	CP%	ADF	NDF	HCN						
Plant Breeding	20	888	888	180	602	304						
Agronomy	03	150	150	66	150	0						
Bikaner Centre	09	0	132	0	0	0						
Godhra Centre	01	30	30	0	0	0						
PG Trial	02	200	200	200	200	0						
TOTAL	35	1268	1400	446	952	304						

Number of Trials Conducted/Allotted (*Kharif-2021***)**- 14 AICRP and 10 state trials were conducted successfully as allocated

Breeder Seed Production: (As per National & State indents)

Sr. No.	Crop		Quantity (kg)
		ICAR	State	Total
1.	Forage Sorghum var. GAFS 11	00	50	50
2.	Forage Sorghum var. GAFS 12	00	60	60
3.	Forage Bajra var. GAFB 4	00	90	90

Revenue generated - ₹ 57,600 [Receipt (01.04.2020 to 28.02.2021)]

Transfer of technology

FTD: The FTD of *Hybrid Napier; Variety:* Co-3have been arranged on farmer's field for wide publicity among the farmers during *Kharif*-2021.

SN	Name of farmers	SN	Name of farmers
1.	Kiritbhai J. Chavada	6.	Santubhai P. Patel
2.	Manjulaben M Patel	7.	Nenaji Mangaji Thakor
3.	Kanaksinh R. Chavda	8.	Balvantsing D. Rathod
4.	Rajendrasing R. Vaghela	9.	Vishnubhai C. Rathod
5.	Shivabhai L. Patel	10.	Rajendrabhai R. Rathod

Golden Jubilee Forage Garden: In forage garden of *Kharif-2021*, there were two types of forage crops like seasonal forage crops (43 varieties) and perennial forage crops (19 varieties). Among these, total 16 varieties of sorghum, 6 varieties of pearl millet, 12 varieties of cowpea, 5 varieties of maize and 4 varieties of rice bean were sown as seasonal forage crops. In perennial crops, 2 varieties of marvel grass, 2 varieties of *Cenchrus* spp, 1 variety of para grass, 3 varieties of Guinea grass and 10 varieties of hybrid napier.

Research Paper published: Eight

- Rathod PH, Shah PG, Parmar KD and Kalasariya RL (2022). The fate of fluopyram in the soil-water-plant ecosystem: a review. *Reviews of Environmental Contamination and Toxicology*, 260(1):1-19. DOI:10.1007/s44169-021-00001-7.
- Farooq TH, Kumar U, Yan Y, Arif MS, Sakoor A, Tayyab M, Rathod PH, Altaf MM and Wu P (2022). Receptiveness of soil bacterial diversity in relation to soil nutrient transformation and canopy growth in Chinese fir monoculture influenced by varying stand density. *Trees-Structure and Function*. DOI: 10.1007/s00468-022-02278-0.
- Patel HK, Rathod PH, Gohil DP, Padheriya D and Raiyani AM. (2021). Response of nitrogen levels on growth, yield and quality of single cut out cultivars. *International Journal of Agriculture Sciences* 13 (4): 10748-10750.
- Shiyal Vikram, Patel HK, Rathod PH, Patel PM, Raval CH and Patel AP (2021). Integrated nutrient management on fodder dual purpose oat (*Avena sativa L.*). *Journal of Plant & Soil Science* 33 (16): 80-86.
- Patel HK, Rathod PH, Shroff JC and Patel PM (2021). Green fodder yield and quality of fodder maize as influenced by seed priming. *Green Farming*. 12 (1&2): 46-48.

- Shroff JC, Patel HK, Patel PM and Rathod PH (2021). Effect of nitrogen levels on yield and quality of Guinea grass under middle Gujarat condition. *Green Farming*, 12 (1&2): 35-38.
- Patel HK, Rathod PH and Padheriya DR (2021). Effect of nitrogen levels on forage yield and quality of multi cuts oat cultivars. *Journal of Plant & Soil Science*, 33(21): 9-13.
- Sidapara Mayank P, Gohil DP, Patel Oarthik U and Sharma Deepak D (2021). Heterosis studies for yield and yield components in okra [Abelmoschus esculentus (L.) Moench]. Journal of Pharmacognosy and Phytochemistry 10(1):1268-1275.

Group Meeting/Training/Seminar/Web Conference Attended/Participated: Nine

- Gohil DP, Patel HK and Rathod PH attended online NGM*Kharif*-2021 held on 1st 2nd June, 2021.
- Gohil DP, Patel HK and Rathod PH attended online NGM Rabi-2021-22 held on 20th September, 2021.
- Patel HK has participated in national level webinar on "Secondary agriculture for agricultural income enhancement" on 19April 2021.
- Patel HK has participated in a webinar on *Madhamakhi palan* during 19-20 June 2021.
- Patel HK has participated in online orientation programme on J-Gate and CMIE database during16-17 July 2021.
- Patel HK has participated in webinar on "Polyhouse na pakoma Rog-Jivat vyavsthapan" on 23 July 2021.
- Patel HK has participated in online seminar on "Analysis of pesticide residues in food and agricultural commodities" on 27 August 2021.
- Patel HK has participated in online seminar on "Climate resilient agricultural production system through organic management" during 20-21 October 2021.
- Rathod PH has participated in online national workshop on "Intellectual property rights and innovations" organized by IPR cell, AAU and Rajiv Gandhi National Institute of IntellectualProperty Management on 27 October 2021.

FTD conducted: Fourteen

Externally funded project: Two

- A project entitled "Quality Seed Production in Fodder Crops" under Fodder Development Programme funded by Govt. of Gujarat, Gandhinagar. **B.H. 18457-28**
- Evaluation of performance of chicklet variety fund

Extension activities: Delivered Phone in live online programme on "Chomasu Ghaschara Pakoni Kheti" in the Doordarshan Programme, Ahmedabad on Date: 02.06.2021.

• Delivered lectures on "Ghaschara Pakonu Gunvatta Sabhar Beej Utpadan" in the course "Diploma in Agricultural Extension Services for Input Dealers (DAESI)" organized by Institute of Distance Education (IDEA), AAU, Anand on Date: 28.01.2022.

• Delivered lectures on "Ghaschara Pakoms Sanklit Jivat Vyavshthannu Mahatva" to the farmers participated in the training programme organized by Department of Entomology, BACA, AAU, Anand on Date: 20.02.2022.

P.G. Teaching during 2021-22

Faculty	Course No.	Title of the course	Credit
Dr D. P. Gohil	GP 511	Breeding for cereals, forage and sugarcane	2 + 1
Dr Hiren K.	AGRON 511	Agronomy of forage crops	2 + 1
Patel	AGRON 601	Current trends in Agronomy	3+0
	PGS-506	Disaster management	1 + 0
	ABM-519	Fertilizer technology and management	2 + 0
	e-Course-3	Usefulness of disaster management in agriculture, Distance Education at IDEA, AAU, Anand	1 + 0
Dr Paresh H. Rathod	Soils 510	Remote sensing and GIS techniques for soil and crop studies	2 + 1
	Soils 512	System approaches in soil and crop studies	2 + 1
	Soils 516	Introduction to agrochemicals	2 + 1
	NRMH 1.1 (UG, COH)	Fundamentals of soil science	2 + 1
	NRMH 4.7 (UG, COH)	Soil, water and plant analysis	1 + 1

P.G. Student allotted to faculty of MFRS, Anand

Major Guide	Student	Degree	Status
Dr D. P. Gohil	Parmar Sumit V.	M. Sc. (Agri.)	Completed
	Borkhatariya Tejas V.	M. Sc. (Agri.)	Continue(4 th Sem.)
	Rathod Parth Kanubhai	M. Sc. (Agri)	Continue (1 st Sem.)
Dr Hiren K. Patel	Patel Harsh K.	M. Sc. (Agri)	Completed
	Nagar Kuldeep	M. Sc. (Agri)	Continue (1 st Sem.)
	Badi Aehamadraza	M. Sc. (Agri)	Continue (1 st Sem.)
	Dudhat Dinesh	M. Sc. (Agri).	Continue (1 st Sem.)
	Nandaniya Bhavna	M. Sc. (Agri).	Continue (1 st Sem.)
	Padheriya Dhaval	Ph. D. (in-service)	Continue (1 st Sem.)
Dr Paresh H. Rathod	Jhala Ila Ranjitsinh	M. Sc. (Agri).	Continue (1 st Sem.)

WEATHER REPORT FOR KHARIF- 2021

The weather report of 'AICRP Forage Crops and Utilization' coordinating, cooperating and voluntary centers across different zones of the country during *Kharif* -2021 has been presented in this section. The weather parameters from 26th Standard Meteorological Week (June 25, 2021) to 44th Standard Meteorological Week (November 04, 2021) were taken into consideration, which covers the *Kharif* 2021 season for all the testing locations for trial conduction. The meteorological data recorded at different centers is presented in tables [**M1 to M14**] and graphically represented in succeeding pages. During the reporting period, weather variations are clearly visible in maximum and minimum temperature, rainfall, rainy days, relative humidity and sunshine hours in different agro-climatic zones, which demonstrated varied impact on establishment, growth, yield and quality of different forage crops, varieties and cropping systems. The weather parameters have also shown close correlation with the incidence and surveillance of insect-pest and diseases of forage crops.

Temperature

In Hill zone, meteorological data from Srinagar, Palampur and Almora has been compiled. Srinagar center recorded wide variations in temperature particularly in T_{min} . On seasonal mean basis, Srinagar remained the coolest, recording mean minimum temperature (T_{Min}) of 15.0° C followed by Almora (16.8° C). Almora recorded highest mean maximum temperature ($T_{Max}-29.2^{\circ}$ C). Srinagar witnessed the coolest week with low temperature of 2.7° C during 44^{th} SMW, however, highest $T_{Max}(32.6^{\circ}$ C) was also recorded at Almora during 27^{th} SMW.

In North-East zone, data has been compiled from Ayodhya, Ranchi, Kalyani, Jorhat, Bhubaneswar and Imphal centres. Imphal recorded lowest T_{min} (15.5 0 C) during 44 rd SMW. On the basis of mean T_{min} of the season, Imphal and Ranchi were coolest recording 21.5 and 23.5 0 C whereas, Bhubaneswar and Ayodhya recorded highest mean T_{max} (33.1 0 C). Maximum day temperature was also recorded at Jorhat (35.6 0 C) during 37 th SMW. Least variation for minimum and maximum temperature over the season was observed at Imphal followed by Ayodhya.

In North-West zone, data has been presented from Hisar, Bikaner, Pantnagar, Udaipur and Ludhiana centers. Maximum temperature was noted at Hisar (41.4.8 $^{\circ}$ C) during 27 th SMW. The highest mean T_{max} (36.9 $^{\circ}$ C) was recorded at Bikaner. The mean T_{min} was nearly equal and ranged between 20.5 to 25.5 $^{\circ}$ C at all the centres.

In Central zone, data has been reported from Jhansi, Anand, Rahuri, Urulikanchan, Jabalpur, and Raipur. Remarkable variations in T_{Max} and T_{Min} was been observed at different centre. Jabalpur recorded the lowest T_{Min} (11.0°C) followed by Jhansi (12.6°C) during 44th SMW. The highest T_{Max} was also recorded at Jhansi (40.8°C) during 27 SMW. Urulikanchan recorded lower mean T_{Min} (20.0°C) over the season as compared to rest of the locations. Jhansi recorded highest mean T_{Max} (33.5°C) during the season among all centres in the zone. The least difference in minimum and maximum temperature over the season was noted at Urulikanchan.

In South zone, data has been reported from Hyderabad, Mandya, Coimbatore, Vellayani and Dharwad centres. The lowest T_{Min} was recorded at Mandya (17.5 0 C) during 29 th SMW followed by Hyderabad (17.9 0 C) in 43 th SMW. The highest day temperature was recorded at Hyderabad centre (33.4 0 C) during 27 th SMW. On the seasonal mean basis, Vellayani and Coimbatore experienced higher mean T_{Max} but was comparable to other locations in the zone. The lowest mean T_{min} (19.1 0 C) was observed at Mandya followed by Dharwadcentre (20.4 0 C). The minimum variation in mean (T_{max} and $T_{min.}$) temperature was observed at Vellayani, whereas, maximum variation was recorded at Hyderabad.

Rainfall

India, being vast country with diverse agro-climate condition witnessed wide variation in total rainfall received during *Kharif* 2021 season, ranging from 33.0 mm at Srinagar to 1920.8 mm at Palampur. Similarly wide variation was recorded in number of rainy days recorded between 2 at Srinagar to 84 at Kalyani. In Hill zone, Palampur received highest rainfall (1920.8 mm) followed by Almora (774.5 mm in 49 rainy days). In North East zone, Bhubaneswar received highest rainfall (1229.3 mm) followed by Imphal (763.9 mm) and lowest being at Kalyani (119.6 mm). The maximum numbers of rainy days were recorded at Kalyani (84rainy days) and lowest being at Ayodhya (35 rainy days). In North-West zone, Pantnagar received highest rainfall (1003.6 mm) in 30 rainy days followed by Ludhiana (803.6 mm) in 33 rainy days and lowest being at Bikaner (267.2 mm in 20 rainy days). In Central zone, maximum rainfall (859.6 mm) in 46 rainy days was received at Raipur followed by Jhansi (775.8 mm) and lowest being with Urulikanchan (318.0 mm). In South zone, Vellayani received maximum rainfall (1178.5 mm) in 74 rainy days followed by Hyderabad (781.0 mm in 40 rainy days) and lowest total rainfall was at Coimbatore (269.0 mm in 30 rainy days).

Relative Humidity (RH)

Being the rainy season, in general higher mean RH values were recorded at all the centres. Jorhat recorded highest mean morning RH (RH₁) of 93.9% whereas highest mean evening RH (RH₂) was observed at Vellayani centre (86.7%). In Hill zone, the mean morning RH was highest at Almora (89.9%). Srinagar recorded minimum morning RH (54.5%) on mean seasonal basis. The maximum difference in morning and evening RH was observed at Almora centre. In North-East zone, relatively higher RH was recorded at all centres. Higher mean RH of 93.9 and 93.7% were noted at Jorhat and Kalyani during morning, respectively. Minimum RH during morning hours was recorded at Imphal (65.9%), whereas, lower evening RH (69.3%) was recorded at Ayodhya. In North-West zone, RH ranged from 91.9 to 72.1 % in morning hours and between 75.3 to 43.7% in afternoon. The lowest mean RH during morning (91.9%) as well as evening hours was recorded at Udaipur (75.3%). Lowest mean RH during evening hours was recorded at Bikaner (43.7%). In Central zone, maximum mean RH in morning hours (88.9%) was recorded at Raipur whereas, lowest RH was noted at Anand (87.8%). As regards to mean RH during evening hours, maximum mean RH in (66.9%) was recorded at Urulikanchan. The maximum variation between minimum and maximum RH was noted at Rahuri (86.4 and 59.3%, respectively). In South zone, maximum mean RH in morning hours (93.7%) was recorded at Hyderabad and lowest RH at Coimbatore (83.5%), whereas, in evening hours maximum mean RH was recorded at Dharwad (77.9%) and lowest RH at Coimbatore (59.7%).

AICRP on Forage Crops & Utilization

Sunshine hours

Among all the zones, maximum mean sunshine hours were observed at Bikaner (7.7 h/day) and minimum at Imphal (4.3 h/day). In Hill zone, higher average sunshine hours were recorded at Palampur (5.3h/day) and Almora (5.3 h/day). In North-West zone, more sunshine hours were recorded at Bikaner (7.7 h/day) followed by Ludhiana (6.7 h/day). Shortest days were observed at Udaipur (4.9 h/day). In North-East zone, on seasonal mean basis, maximum average sunshine hours were recorded at Ranchi (6.5 h/day) whereas, shortest days were observed at Bhubaneswar and Imphal (4.3 h/day). Other centres recorded minor difference in sunshine duration. In Central zone, on mean basis, the maximum sunshine hours was recorded at Rahuri (5.0 h/day) followed by Anand (4.8 h/day) In South zone, on mean basis, Coimbatore recorded maximum sunshine hours (5.4 h/day), whereas lowest was at Mandya (4.4 h/day).

SMW		SMW		SMW	
26	June 25-July 01,2021	33	Aug. 13-Aug. 19, 2021	40	Oct. 01-Oct. 07, 2021
27	July 02-July 08, 2021	34	Aug. 20-Aug. 26, 2021	41	Oct. 08-Oct. 14, 2021
28	July 09-July 15, 2021	35	Aug. 27-Sep. 02, 2021	42	Oct.15-Oct. 21, 2021
29	July 16-July 22, 2021	36	Sep. 03-Sep. 09, 2021	43	Oct. 22-Oct.28, 2021
30	July 23-July 29, 2021	37	Sep. 10-Sep. 16, 2021	44	Oct. 29-Nov. 04, 2021
31	July 30-Aug. 05, 2021	38	Sep. 17-Sep. 23, 2021		
32	Aug. 06-Aug 12, 2021	39	Sep. 24-Sep. 30,2021		

Table M1: Meteorological data in Hill zone during crop growth period of Kharif-2021

Std.				AMPUR	<u> </u>	growin pe				ALMOF	RA		
Week No.	Tempera	ature (C)	Humid	ity (%)	Rainfall (mm)	Sunshine hrs	Tempera	ature (C)	Humidi	ty (%)	No. of Rainy	Rainfall (mm)	Sunshine hrs
	Max.	Min.	RH1	RH2			Max.	Min.	RH1	RH2	days		
26	30.5	19.4	69	51	6.2	9.6	31.7	20.1	81	59	3	16.5	8.1
27	31.1	19.4	75	53	62.2	8.7	32.6	20.4	86	48	0	0.0	8.1
28	27.8	18.8	93	76	559.0	4.9	29.9	20.0	85	49	4	14.5	5.0
29	26.2	20.2	96	88	281.8	2.1	26.4	19.5	89	83	5	134.0	2.1
30	25.9	20.8	98	91	174.4	1.3	28.9	20.0	90	75	4	25.5	4.3
31	27.5	20.0	94	83	89.2	3.9	30.0	20.2	88	75	5	37.5	5.2
32	27.1	19.3	91	85	85.6	4.1	29.2	19.9	90	66	5	92.5	4.5
33	27.6	18.6	88	81	45.0	6.6	30.1	16.8	91	63	3	33.5	5.3
34	25.5	20.5	93	89	66.4	2.0	29.4	19.4	86	72	1	8.0	5.0
35	26.5	18.3	93	82	80.4	5.0	29.6	18.8	94	70	4	49.5	4.8
36	26.4	19.0	96	85	180.6	3.0	30.1	18.7	92	71	3	12.0	4.4
37	25.5	18.2	93	87	85.2	4.0	30.0	18.2	89	73	3	8.5	4.6
38	26.5	18.9	95	83	86.4	4.6	29.5	17.7	92	76	4	13.5	3.8
39	26.7	17.9	86	85	29.8	4.4	30.1	16.5	91	70	1	2.0	5.3
40	25.9	16.5	89	78	55.0	4.9	30.1	15.4	93	70	1	31.0	5.9
41	26.8	14.9	73	55	15.0	8.4	30.4	12.6	93	58	0	0.0	7.5
42	25.9	13.9	77	63	4.2	7.4	26.1	11.2	96	79	3	296.0	4.2
43	22.1	10.5	74	60	14.4	6.5	26.8	8.9	93	56	0	0.0	5.6
44	22.5	9.3	65	53	0.0	8.5	24.8	5.4	89	61	0	0.0	7.0
Mean/ Total	26.5	17.6	86.2	75.2	1920.8	5.3	29.2	16.8	89.9	67.0	49	774.5	5.3

Table M2: Meteorological data in Hill zone during crop growth period of Kharif-2021

		rang or op grower p	SRINAGAR		
Std. Week No.	Tempera	nture (C)	Humid	lity (%)	Rainfall
	Max.	Min.	RH1	RH2	(mm)
26	30.7	15.8	68	43	0.0
27	30.5	16.9	69	40	1.3
28	29.9	19.7	78	54	2.3
29	29.0	19.6	80	48	1.7
30	31.1	21.5	78	54	1.0
31	30.0	19.5	82	55	1.1
32	29.9	17.6	83	69	1.3
33	28.7	15.8	81	65	1.7
34	32.1	18.1	81	61	0.0
35	29.0	16.0	71	45	0.3
36	30.8	16.9	73	44	0.0
37	28.0	15.8	82	53	5.2
38	29.5	16.8	75	47	0.3
39	29.5	14.9	79	49	0.8
40	26.9	13.8	78	51	1.8
41	23.2	8.8	81	58	1.7
42	21.4	8.5	91	65	3.0
43	15.1	5.4	88	73	9.5
44	18.2	2.7	87	62	0.0
Mean/ Total	27.6	15.0	79.2	54.5	33.0

Table M3: Meteorological data in North West zone during crop growth period of Kharif-2021

Std.				H	ISAR			BIKANER						
Week	Tempe			idity	No. of	Rainfall	Sunshine	Tempe			idity	No. of	Rainfall	Sunshine
No.	((ì	(0)	Rainy	(mm)	hrs	((ì	(0)	Rainy	(mm)	hrs
	Max.	Min.	RH1	RH2	days			Max.	Min.	RH1	RH2	days		
26	40.0	26.8	63	35	1	8.9	8.1	41.1	27.7	57	35	1	16.0	
27	41.4	27.9	65	38	0	0.0	8.0	41.1	27.9	60	37	0	0.0	
28	37.8	28.1	79	61	3	18.5	5.2	41.1	27.5	68	40	2	13.2	
29	35.9	26.9	86	63	1	9.0	4.3	39.0	29.1	68	51	1	20.0	2.5
30	33.7	27.4	92	76	3	56.0	3.5	36.9	27.1	76	52	2	31.4	5.0
31	31.9	26.5	94	79	4	149.9	2.6	37.4	27.2	74	54	2	18.6	4.7
32	35.6	26.6	88	58	0	0.0	7.6	37.7	26.9	70	45	1	34.0	9.1
33	37.1	26.3	80	54	0	0.0	9.6	39.1	27.1	60	36	0	0.0	10.9
34	34.7	26.7	86	69	0	0.5	5.2	38.9	26.5	66	38	0	1.6	8.6
35	35.9	25.9	88	66	1	15.7	6.7	37.7	26.4	65	40	0	0.0	9.7
36	32.7	25.8	95	75	2	100.2	4.3	36.8	25.6	80	52	2	28.8	7.0
37	31.8	25.2	89	72	2	44.3	4.7	34.4	24.7	86	65	3	28.6	6.7
38	32.3	25.2	90	76	1	142.0	6.1	35.1	24.9	85	55	2	27.0	7.8
39	31.9	25.4	91	71	2	126.0	5.7	33.6	23.7	91	62	1	35.4	6.1
40	33.3	25.3	93	66	1	5.5	6.7	36.1	24.4	82	47	1	3.2	9.0
41	34.8	21.6	86	37	0	0.0	8.2	36.9	20.4	62	29	0	0.0	9.3
42	31.3	18.4	86	50	0	0.0	6.3	34.6	17.2	67	29	1	2.6	8.8
43	29.8	15.9	86	44	0	0.0	7.8	30.5	17.0	79	41	1	6.8	8.8
44	30.4	13.5	83	34	0	0.0	7.0	32.4	13.6	72	24	0	0.0	9.3
Mean/ Total	34.3	24.5	85.3	59.2	21	676.5	6.2	36.9	24.5	72.1	43.7	20	267.2	7.7

Table M4: Meteorological data in North West zone during crop growth period of Kharif-2021

Std.				PANT	NAGAR						LUD	HIANA		
Week	Tempe			idity	No. of	Rainfall	Sunshine	Tempe	erature		idity	No. of	Rainfall	Sunshine
No.	((`	6)	Rainy	(mm)	hrs	((<u>C)</u>	· ·	6)	Rainy	(mm)	hrs
	Max.	Min.	RH1	RH2	Days			Max.	Min.	RH1	RH2			
26	35.7	27.0	78	56	0	0.0	7.2	36.3	25.3	68	42	9	84.8	8.1
27	36.4	27.3	81	56	0	0.0	7.0	37.5	28.5	65	45	1	27.4	8.1
28	33.7	26.3	82	64	2	33.6	4.2	34.6	27.8	72	57	2	30.8	6.0
29	30.2	25.4	91	80	6	168.6	2.3	32.8	27.3	80	69	4	167.8	5.3
30	32.1	26.6	88	74	2	33.8	4.1	31.8	27.7	85	74	2	45.2	3.5
31	33.4	26.3	86	66	2	19.6	6.4	32.5	27.0	86	72	4	69.0	3.8
32	33.7	26.2	85	66	2	12.2	6.2	34.1	26.8	83	61	0	1.0	7.9
33	33.4	25.8	90	69	4	96.7	4.4	35.2	28.1	77	55	0	0.0	10.1
34	31.4	25.4	91	79	3	60.4	2.3	32.3	27.2	84	70	1	37.6	4.9
35	31.4	25.0	89	75	2	114.6	3.1	34.1	26.1	79	58	0	0.0	7.5
36	33.0	25.7	85	62	0	0.0	9.0	32.2	26.8	84	69	2	16.2	4.3
37	33.5	24.7	84	69	2	27.2	6.7	31.6	25.2	84	68	4	146.8	5.6
38	32.2	24.8	90	63	1	9.4	5.5	29.8	24.6	90	75	0	132.8	3.5
39	33.4	24.2	84	58	0	0.0	7.4	32.8	24.6	89	62	0	0.0	8.2
40	32.9	23.5	91	61	1	7.3	6.2	32.8	24.4	87	56	1	6.6	8.7
41	33.2	20.5	87	50	0	0.0	8.0	33.7	21.6	85	40	0	0.0	9.4
42	30.6	20.6	88	67	3	420.2	5.3	31.8	19.1	87	39	0	0.0	7.0
43	29.7	16.6	89	44	0	0.0	8.5	31.3	19.5	87	43	3	37.6	8.5
44	29.7	14.1	88	37	0	0.0	8.3							
Mean/ Total	32.6	24.0	86.7	62.9	30	1003.6	5.9	33.2	25.4	81.8	58.6	33	803.6	6.7

Table M5: Meteorological data in North West zone during crop growth period of Kharif-2021

				Udaipur		
Std. Week No.	Tempera	nture (C)	Humid	lity (%)	Cumahina hua	Rainfall
	Max.	Min.	RH1	RH2	Sunshine hrs	(mm)
26	34.6	24.2	91	74	7.6	7.6
27	34.2	25.2	86	72	8.4	0.0
28	34.9	25.1	92	77	6.4	10.8
29	33.5	23.3	92	75	4.4	22.9
30	29.0	22.0	91	86	0.2	43.4
31	27.6	21.8	93	83	0.3	18.6
32	30.8	21.8	92	77	3.7	49.2
33	31.6	21.1	92	73	6.4	3.0
34	30.1	22.0	92	75	3.8	25.8
35	30.7	20.9	95	86	3.3	40.2
36	31.2	21.2	96	85	3.3	27.0
37	28.7	21.1	94	77	1.8	122.4
38	30.5	21.3	95	80	3.1	37.8
39	29.8	21.0	95	83	3.9	17.2
40	31.2	20.4	95	75	5.9	3.3
41	32.9	19.6	92	65	6.5	1.8
42	30.9	15.0	87	69	7.1	6.6
43	29.9	13.8	91	72	8.0	0.0
44	30.4	9.4	85	45	8.7	0.0
Mean/ Total	31.2	20.5	91.9	75.3	4.9	437.6

Table M6: Meteorological data in Central zone during crop growth period of Kharif-2021

Std.				URLIF	KANCHAN	I	RAIPUR							
Week No.	Tempe (C		RH1	RH2	Rainfall (mm)	No. of Rainy days	Tempera	ature (C)	Humid	ity (%)	No. of Rainy	Rainfall (mm)	Sun shine	
110.	()	-)			(111111)	uays					days	(111111)	(hours)	
	Max.	Min.	•				Max.	Min.	RH1	RH2	uays		(Hours)	
26	29.6	22.8	97	74	14.5	1	33.1	25.5	86	62	2	42.6	3.6	
27	31.8	22.9	82	67	8.3	2	33.6	25.1	90	69	4	135.0	3.4	
28	29.5	22.9	74	76	3.1	0	32.1	26.0	87	67	1	16.2	4.0	
29					30.4	4	34.2	26.5	84	63	3	56.8	6.7	
30					11.8	0	30.4	24.8	91	80	5	88.2	1.5	
31	26.6	21.9	84	87	7.6	2	28.8	24.8	88	76	2	15.8	1.3	
32	29.0	21.7	73	78	1.4	0	33.0	25.6	88	70	3	63.6	3.2	
33	27.2	21.4	81	89	5.2	0	32.8	26.0	90	68	3	25.8	3.2	
34	29.3	20.8	72	79	4.5	1	32.1	25.6	90	70	3	22.8	3.9	
35	28.8	22.5	76	79	12.6	2	32.6	25.5	87	65	2	9.8	5.0	
36	29.4	21.1	74	76	54.6	2	32.6	24.9	88	70	4	86.0	6.4	
37	28.4	21.6	67	68	11.6	2	31.1	24.5	94	79	7	238.4	2.6	
38	29.1	21.1	63	65	6.3	1	30.2	24.3	92	74	2	16.2	1.9	
39	29.3	21.6	61	64	9.3	1	31.8	24.7	91	70	3	26.8	5.1	
40	33.0	21.3	52	55	100.4	4	32.7	25.1	90	66	0	0.0	6.0	
41	31.5	20.6	49	53	36.1	3	32.6	23.0	89	44	0	0.4	6.7	
42	31.2	18.5	41	45	0.3	0	32.4	24.3	90	57	2	15.2	7.8	
43	30.9	15.1	35	37	0.0	0	31.4	18.1	87	35	0	0.0	9.3	
44	32.0	15.7	73	42	0.0	0	30.4	19.1	88	50	0	0.0	7.9	
Mean/ Total	29.8	20.8	67.8	66.9	318.0	25.0	32.0	24.4	88.9	65.0	46	859.6	4.7	

Table M7: Meteorological data in Central zone during crop growth period of Kharif-2021

		101081041		NAND	me daring	crop growt	ii periou	<u> </u>		RAHUR	Ī		
Std. Week	Temper	ature (C)		dity (%)	Rainfall	Sunshine	Temper	ature (C)	Humic	dity (%)	No. of	Rainfall	Sunshine
No.					(mm)	hrs					Rainy	(mm)	hrs
110.	Max.	Min.	RH1	RH2			Max.	Min.	RH1	RH2	days		
26	33.9	26.3	85	61	52.2	6.0	30.3	23.9	86	62	4	87.2	3.4
27	35.8	27.7	82	52	0.0	9.2	34.1	25.1	76	45	0	0.0	8.4
28	35.9	27.4	87	60	8.4	6.3	30.3	23.8	91	68	4	118.6	2.3
29	33.9	27.1	89	71	10.4	3.5	30.1	23.9	85	66	4	43.6	3.0
30	31.0	26.4	90	81	93.0	0.4	30.1	24.6	82	59	0	2.8	3.6
31	30.5	26.3	87	74	5.6	0.3	28.4	23.6	83	67	1	4.8	2.1
32	33.0	26.6	84	60	0.0	3.7	31.3	24.2	80	58	0	1.2	5.5
33	33.5	26.1	87	64	5.6	6.1	25.8	22.7	88	68	4	34.6	2.9
34	31.2	26.0	90	69	1.0	1.7	27.8	22.2	93	68	3	48.8	4.2
35	33.2	25.6	92	75	82.8	4.2	29.3	22.9	88	66	2	81.2	4.7
36	32.7	26.3	91	78	13.4	4.3	29.6	23	92	67	4	117.4	4.3
37	30.3	25.8	94	84	54.5	2.0	29.8	23.9	84	64	1	7.6	4.3
38	29.8	25.7	95	85	89.2	0.6	28.9	23.1	87	69	3	51.6	3.6
39	31.7	25.5	94	72	72.0	3.1	28.6	22.4	92	69	5	58.8	1.7
40	33.6	25.9	92	63	18.0	6.6	31.2	22.7	94	65	4	63.2	7.7
41	35.0	25.8	91	58	0.4	6.6	30.8	22.7	92	59	1	25.4	6.1
42	34.7	21.6	83	38	0.0	8.3	32.3	20.7	85	39	0	0.0	8.3
43	33.1	21.2	83	41	0.0	9.3	32.1	18.5	84	32	0	0.0	9.8
44	33.1	16.7	73	23	0.0	9.7	31.3	18.2	79	36	0	0.0	8.6
Mean/	32.9	25.3	87.8	63.6	506.5	4.8	30.1	22.7	86.4	59.3	40.0	746.8	5.0
Total													

Table M8: Meteorological data in Central zone during crop growth period of Kharif-2021

Std. Week				JAB	ALPUR						JHANS	[
No.	Tempe	erature C)		nidity 6)	No. of Rainy	Rainfall (mm)	Sunshine hrs	Tempe	erature C)		nidity 6)	Rainfall (mm)	No. of Rainy days
	Max.	Min.	RH1	RH2	days			Max.	Min.	RH1	RH2		
26	33.6	24.7	86	61	3	38.6	4.7						
27	35.7	26.7	75	50	1	15.0	4.7	40.8	26.8	80	51	0.0	0
28	33.3	25.1	85	58	2	33.2	5.5	38.7	26.8	83	49	8.2	1
29	33.4	25.4	84	70	3	35.4	5.5	35.7	26.4	88	60	70.8	3
30	27.7	23.8	95	85	5	130.4	0.2	34.3	25.8	86	50	29.2	3
31	26.8	23.4	91	84	6	43.7	0.3	29	24.3	92	71	318.2	4
32	28.5	24.2	90	79	2	11.1	0.5	32.2	25.7	89	59	6.0	1
33	32.6	24.7	89	71	3	42.3	4.9	35.6	25.8	81	46	0.0	0
34	30.7	24.7	87	67	0	2.2	2.6	34.1	25.6	83	49	4.8	1
35	31.6	24.5	86	68	0	2.5	5.1	34.1	24.4	88	62	47.4	3
36	31.4	24.1	91	78	4	35.7	4.1	33.6	24.7	83	60	46.2	1
37	30.0	23.8	93	81	4	100.8	2.3	31.8	24.4	93	86	93.8	6
38	30.9	23.6	89	68	2	16.3	4.7	30.8	23.8	88	64	26.0	2
39	31.9	24.1	88	62	1	3.8	5.6	32.7	24.6	81	49	0.0	0
40	32.9	23.7	84	58	0	0	8.2	33.2	22.3	85	52	2.0	0
41	33.3	20	84	48	0	0	8.6	32.7	19.6	86	54	0.0	0
42	31.9	19.9	88	48	2	67	8.1	32.4	19.4	87	64	123.2	2
43	30.7	16	87	41	0	0	8.3	31.6	16.7	80	83	0.0	0
44	28.7	11	84	33	0	0	9	30.5	12.6	82	52	0.0	0
Mean/ Total	31.3	22.8	87.2	63.7	38.0	578.0	4.9	33.5	23.3	85.3	58.9	775.8	27.0

Table M9: Meteorological data in North East zone during crop growth period of Kharif-2021

Std.				JORH	AT						RANC	HI		
Week No.	_	erature (C)	Humi	dity (%)	No. of Rainy	Rainfall (mm)	Sunshine hrs	Tempe:		Humi	dity (%)	No. of Rainy	Rainfall (mm)	Sunshine hrs
	Max.	Min.	RH1	RH2	days			Max.	Min	RH1	RH2	days		
26	32.1	24.9	95	81	3	63.2	1.9	34.2	23.0	85	70	1	20.4	6.3
27	31.4	24.9	94	77	4	38.8	2.8	33.6	24.2	86	70	4	159.1	5.9
28	33.3	25.0	95	78	4	48.4	3.2	32.5	23.2	86	70	3	94.4	5.2
29	33.0	25.1	94	74	2	67.0	4.8	34.3	24.1	86	70	3	62.0	7.2
30	35.4	25.8	90	64	1	6.9	7.9	33.8	24.2	85	69	2	74.8	4.4
31	34.0	25.1	95	72	4	35.9	6.1	31.2	23.0	85	69	3	302.0	3.4
32	34.5	25.3	91	71	3	113.4	4.5	33.6	24.3	85	70	4	133.4	8.6
33	32.4	25.2	92	82	2	55.0	1.9	33.5	24.9	85	69	3	60.8	7.1
34	32.2	24.8	95	81	3	20.0	2.4	33.6	24.6	86	69	3	54.8	7.1
35	31.1	24.2	95	81	2	32.4	2.4	31.5	25.2	84	70	2	27.4	5.6
36	33.7	24.3	94	72	2	16.6	6.8	33.0	24.7	85	70	3	68.8	7.2
37	35.6	25.4	91	62	1	3.0	8.6	32.3	24.7	85	69	4	229.4	3.7
38	32.0	23.8	96	73	3	33.4	4.3	32.3	23.6	84	69	4	114.6	6.0
39	34.2	24.2	94	64	1	45.8	7.0	32.7	24.3	87	70	2	33.4	7.6
40	32.7	23.9	93	73	1	3.7	6.4	31.9	23.8	86	69	2	49.6	8.0
41	34.5	24.3	94	66	1	22.6	8.0	32.0	22.5	85	69	0	0.0	8.8
42	33.8	24.1	94	73	2	62.2	5.2	31.7	22.1	87	69	2	36.2	5.0
43	30.2	20.5	96	63	1	16.9	7.0	29.8	19.0	86	69	0	0.0	8.0
44	30.1	18.1	96	58	1	14.8	8.7	29.8	19.6	85	70	0	0.0	7.6
Mean/ Total	33.0	24.2	93.9	71.8	41	700.0	5.3	32.5	23.4	85.4	69.5	45	1521.1	6.5

Table M10: Meteorological data in North East zone during crop growth period of Kharif-2021

Std.		g		IMPHA		g	p growin				AYODE	IYA		
Week No.	_	erature C)	Humic	lity (%)	Rainfall (mm)	No. of Rainy	Sunshin e hrs	Temper (C)		Humid	ity (%)	No. of Rainy	Rainfall (mm)	Sunshine hrs
	Max.	Min.	RH1	RH2				Max.	Min.	RH1	RH2	days		
26	28.6	22.5	87	73	30.0	2	2.4	34.1	27.5	89	66	2	14.4	4.0
27	30.8	22.8	85	63	21.6	4	4.1	35.5	27.2	96	72	1	38.4	5.7
28	31.0	22.3	84	64	45.8	4	4.3	34.8	27.1	87	62	0	0.0	6.7
29	29.8	22.9	88	70	82.1	3	2.8	34.1	26.8	92	70	4	38.0	3.0
30	29.8	22.6	92	69	76.2	2	2.0	34.4	27.2	89	70	3	37.4	4.2
31	30.2	22.6	86	72	93.1	5	4.5	33.2	26.1	86	66	1	3.0	5.9
32	29.7	23.6	83	69	5.7	2	2.0	32.2	26.2	92	79	4	125.6	3.4
33	27.5	22.4	93	77	66.4	2	1.6	33.8	26.2	90	72	2	18.8	5.4
34	29.1	22.5	89	72	20.7	2	2.1	32.2	25.5	95	81	3	24.6	2.6
35	30.8	22.7	89	67	82.1	5	5.1	32.7	26.1	90	72	1	0.1	5.5
36	30.4	22.0	86	64	46.4	5	5.1	33.7	26.2	94	65	2	42.4	3.9
37	29.0	21.8	88	73	34.3	2	2.0	32.1	25.5	90	68	4	206.0	4.4
38	30.1	21.4	90	65	63.5	5	5.4	31.2	25	94	78	1	41.4	6.1
39	30.6	21.2	86	61	18.3	7	6.6	32.2	25.1	94	75	2	63.0	7.3
40	31.1	21.6	88	62	5.9	7	6.7	32.7	24.5	92	74	3	18.0	8.1
41	30.9	21.1	87	58	4.4	6	6.3	34	24	90	69	0	0.0	9.0
42	27.5	19.0	88	64	62.4	4	4.4	31.8	23.6	94	69	2	24.0	6.9
43	27.6	17.9	92	62	5.0	6	6.2	31.1	18.2	89	47	0	0.0	6.5
44	28.0	15.5	82	47	0.0	9	8.9	32.2	21.9	91	62	0	0.0	6.6
Mean/ Total	29.6	21.5	87.5	65.9	763.9	81.1	4.3	33.1	25.3	91.3	69.3	35.0	695.1	5.5

Table M11: Meteorological data in North East zone during crop growth period of Kharif-2021

Std. Week				KALYA		during cr	1 8				UBANE	SWAR		
No.	Tempe (C			dity (%)	No. of Rainy	Rainfall (mm)	Sun shine	Tempera	ature (C)	Hum (%	(o)	No. of Rainy	Rainfall (mm)	Sunshine hrs
	Max.	Min.	RH1	RH2	days		hrs	Max.	Min.	RH1	RH2	days		
26	33.5	26.9	91	69	1	0.1	5.4	34.4	26.9	92	71	2	22.1	6.0
27	33.0	26.2	94	80	4	2.6	2.1	34.4	26.1	93	75	3	67.7	3.5
28	33.0	26.8	93	82	6	6.7	4.7	33.5	26.4	92	73	5	62.2	6.2
29	33.5	26.5	92	74	7	3.7	5.3	35.0	26.3	93	72	2	80.4	8.3
30	32.0	26.2	96	79	7	11.1	3.4	31.9	26.1	96	81	4	51.0	1.1
31	31.1	26.3	96	83	6	12.4	1.8	32.5	25.7	93	73	1	15.6	3.0
32	32.7	26.0	96	80	7	8.9	3.6	32.9	27.0	93	68	4	54.0	5.9
33	33.7	27.5	93	76	2	0.8	3.3	33.9	26.2	91	77	3	36.8	3.3
34	33.0	26.1	92	77	5	4.8	5.5	33.5	25.4	92	74	5	125.2	6.2
35	32.0	25.7	96	82	6	16.7	3.4	32.9	25.8	94	81	6	130.4	4.6
36	34.1	26.2	92	71	3	2.9	6.0	32.8	25.5	94	78	4	92.7	5.2
37	31.8	25.7	94	75	6	11.4	5.8	32.2	25.4	97	84	4	299.7	2.1
38	30.1	25.2	97	85	6	8.3	2.3	32.4	25.4	96	80	3	69.1	1.7
39	32.7	25.8	92	73	5	2.2	4.6	32.1	25.5	94	80	3	45.2	3.6
40	32.2	25.0	96	74	4	13.0	6.4	34.4	25.4	93	67	1	16.5	7.1
41	34.3	26.0	91	69	0	0.0	7.1	34.6	26.0	93	64	1	15.5	3.5
42	31.4	24.9	96	81	6	13.9	3.4	30.9	25.1	97	73	6	45.2	0.9
43	31.6	23.5	94	64	3	0.3	6.9	33.0	22.2	93	65	0	0.0	7.7
44	31.1	21.2	88	56	0	0.0	7.2	31.1	23.6	86	60	0	0.0	2.0
Mean/ Total	32.4	25.7	93.7	75.3	84	119.6	4.6	33.1	25.6	93.3	73.5	57	1229.3	4.3

Table M12: Meteorological data in South zone during crop growth period of Kharif-2021

Std. Week		,	<u></u>		RABAD	···	p growin pe				VELL	AYANI		
No.	_	rature	Hum		No. of	Rainfall	Sunshine	_	rature		idity	No. of	Rainfall	Sunshine
	Max.	<u> </u>	(% RH1	(6) RH2	Rainy days	(mm)	hrs	(() Mari		RH1	%) RH2	Rainy days	(mm)	hrs
26	32.1	Min. 23.5	93	KH2 67	3	13.0	3.3	Max. 32.2	Min. 26.1	88	80	uays 1	0.8	7.5
					1					88	81	3		
27	33.4	24.0	93 98	61 88	1	16.0	5.3	32.7	26.2	93	88		2.4	8.1
28	29.4	22.8			4	95.8	2.3	30.7	23.7			6	121.4	4.6
29	29.6	22.9	99	85	4	152.2	2.7	31.6	25.1	92	84	2	18.0	6.3
30	28.5	22.7	98	80	3	41.8	4.1	30.3	24.0	94	88	6	62.6	4.1
31	30.4	23.1	96	78 7 0	0	0.0	5.7	31.4	25.5	89	86	3	2.5	8.8
32	32.2	23.9	95	70	0	2.4	6.6	30.8	23.9	92	87	3	43.2	6.0
33	30.4	22.9	94	76	4	52.8	4.4	30.6	23.3	91	85	1	8.6	5.2
34	29.9	23.1	93	67	0	1.2	5.0	31.1	24.1	91	85	5	53.0	9.0
35	28.9	22.2	96	81	6	54.6	2.1	30.3	22.7	94	90	5	67.5	2.9
36	27.7	22.3	98	82	5	81.8	2.3	30.6	23.3	92	87	3	32.3	6.4
37	29.0	22.8	91	72	1	7.2	4.7	31.0	23.5	91	86	4	83.1	6.4
38	30.5	22.6	93	72	2	30.0	5.9	31.8	24.3	88	81	3	33.8	6.8
39	28.1	22.1	93	79	4	131.4	3.0	31.1	23.3	92	88	3	166.1	4.6
40	31.4	22.4	94	62	1	4.4	7.9	31.4	22.4	93	90	3	118.6	3.2
41	31.4	21.4	91	59	1	87.8	7.6	31.6	22.2	96	91	7	135.0	2.4
42	30.6	21.4	89	62	1	8.6	5.7	30.8	21.9	92	89	6	95.6	1.1
43	30.9	17.9	90	40	0	0.0	8.9	31.0	22.8	92	91	4	70.8	4.2
44	29.5	20.1	85	61	0	0.0	4.8	30.1	22.5	94	90	6	63.2	2.4
Mean/ Total	30.2	22.3	93.7	70.7	40	781.0	4.9	31.1	23.7	91.7	86.7	74	1178.5	5.3

Table M13: Meteorological data in South Zone during crop growth period of Kharif-2021

Std. Week		or orogic			IMBATOI		p growin p				MAN	NDYA		
No.	Tempe (C		(%	idity 6)	No. of Rainy	Rainfall (mm)	Sunshine hrs	_	erature C)		nidity 6)	No. of Rainy	Rainfall (mm)	Sunshine hrs
	Max.	Min.	RH1	RH2	days			Max.	Min.	RH1	RH2	days		
26	32.7	23.0	82	52	0	1.0	8.1	30.7	20.4	89	75	0	0.0	4.1
27	32.9	24.0	85	58	1	7.0	7.7	31.0	19.8	91	72	2	37.0	4.6
28	30.4	23.4	80	64	1	5.5	1.4	30.2	18.9	88	79	2	9.0	2.3
29	29.8	23.2	81	62	2	15.5	5.2	28.1	17.5	90	79	2	18.7	1.3
30	31.0	23.9	77	59	0	2.5	5.5	29.4	17.9	95	76	2	39.6	3.4
31	32.4	23.0	82	51	0	0.0	7.5	29.6	18.4	87	72	0	0.0	5.7
32	32.5	23.4	85	56	0	1.0	6.5	30.0	18.3	88	65	0	2.0	5.0
33	31.2	23.7	85	54	1	11.3	4.5	30.3	20.4	89	57	2	29.4	3.1
34	31.3	22.8	85	63	3	14.2	6.6	30.1	18.3	87	64	2	11.0	4.9
35	31.1	22.9	85	60	3	16.0	3.2	29.3	18.0	86	60	1	7.2	4.8
36	29.9	22.8	82	60	2	9.0	5.7	29.7	19.0	86	62	2	46.5	1.9
37	32.2	23.6	81	54	0	0.0	6.9	30.0	19.3	88	62	0	1.0	5.0
38	33.2	23.3	85	55	1	3.0	6.1	30.3	19.4	89	61	0	0.0	6.6
39	31.4	23.5	83	59	2	17.0	5.7	30.0	20.0	91	62	1	5.4	4.6
40	30.9	23.5	87	62	4	5.0	5.3	30.0	19.7	91	59	3	33.0	5.0
41	30.9	23.3	83	65	1	37.0	4.0	29.4	19.7	89	63	5	77.6	5.4
42	31.0	23.5	86	66	1	11.5	5.3	30.1	20.1	85	61	2	37.4	5.2
43	30.3	22.7	86	64	3	66.5	4.9	30.1	19.7	90	63	4	161.4	5.6
44	28.1	23.0	87	71	5	46.0	2.1	29.4	18.3	89	62	1	11.6	4.3
Mean/ Total	31.2	23.3	83.5	59.7	30	269.0	5.4	29.9	19.1	88.8	66.0	31	527.8	4.4

Table M14: Meteorological data in South Zone during crop growth period of Kharif-2021

Std. Week				DHAI	RWAD		
No.	Tempera	ature (C)	Humic	lity (%)	No. of Rainy	Rainfall	Sunshine
	Max.	Min.	RH1	RH2	days	(mm)	hrs
26	28.4	20.7	89	71	0	1.8	NA
27	30.1	21.2	88	70	1	7.6	NA
28	26.7	20.5	91	86	4	23.8	NA
29	25.7	20.7	91	89	5	44.0	NA
30	26.1	20.4	91	87	3	104.6	NA
31	27.0	20.7	92	87	3	16.4	NA
32	29.2	20.8	89	83	2	12.3	NA
33	26.8	20.1	90	90	3	14.0	NA
34	29.0	20.2	89	81	1	11.0	NA
35	28.2	20.6	88	79	2	26.6	NA
36	27.5	20.5	91	80	2	11.4	2.9
37	27.1	21.0	92	86	3	16.6	3.9
38	29.1	20.3	89	71	0	0.0	5.2
39	28.0	20.3	88	78	2	19.4	4.1
40	30.9	21.1	87	80	4	39.8	6.3
41	29.2	20.9	91	75	2	25.0	5.1
42	30.6	19.6	83	61	0	0.0	6.7
43	29.8	18.5	77	62	1	33.4	7.0
44	29.4	19.7	83	64	1	3.8	5.2
Mean/ Total	28.4	20.4	88.4	77.9	39	411.5	5.2

k	Charif-2021	Tr1	Tr2	Tr3	Tr3	Tr5	7 Tr6	Tr7	Tr8	Tr9	Tr10
Zone	Location	IVTM	AVTM-1	AVTM-2	AVTM-2	IVTPM	AVTPM-1	AVTPM-2	AVTPM-2	IVTC	AVTC-1
Zone	Location	14 1 141	AVIIVI-I	AV I IVI-Z	(seed)	IVIFW	AVIFW-I	AV I FIVI-Z	(seed)	1010	AVIC-I
1 (HZ)	Palampur	DR	DR							DR	· [
2	Srinagar	DR	DR							DR	I
3	Almora	DR	DR								<u> </u>
4	Rajouri	DR	DR							DR	
5 (NWZ)	Bikaner					DR	DR	DR	DR	DR	 [
6	Jalore	DR	DR	DR		DR	DR	DR		DR	 [
7	Hisar	DR	DR	DR	TF	DR	DR	DR	TF	TF	 [
8	Ludhiana	DR	DR	DR	DR	DR	DR	DR	DR	DR	<u> </u>
9	Pantnagar	DR	DR	DR	DR					DR	<u> </u>
10	Udipur	DR	DR	DR						TF	
11	Avikanagar					DR	DR	DR			
12	Jodhpur										 [
13 (NEZ)	Jorhat									DR	DR
14	Kalyani									DR	DR
15	Bhubaneswar	DR	DR			DR	DR	DR		DR	DR
16	Ranchi	DR	DR			DR	DR	DR		DR	DR
17	Pusa	DR	DR			DR	DR	DR	DR	DR	DR
18	Ayodhya	DR	DR			DR	DR	DR	DR	DR	DR
19	CAU Imphal	DR	DR							DR	DR
20 (CZ)	Jhansi	DR	DR	DR		DR	DR	DR		DR	 [
21	Rahuri	DR	DR	DR		DR	DR	DR		DR	 [
22	Urulikanchan	DR	DR	DR	DR	DR	DR	DR		DR	<u> </u>
23	Anand			DR	DR	DR	DR	DR		DR	
24	Jabalpur	DR	DR	DR	DR	DR	DR	DR	DR		 [
25	Raipur	DR	DR	DR	DR	DR	DR	DR	DR	DR	
26	Karjat (Dapoli)										 [
27	Meerut									DR	<u> </u>
28 (SZ)	Hyderabad	DR	DR			DR	DR	DR	DR	DR	DR
29	Mandya	DR	DR			DR	DR	DR	DR	DR	DR
30	Coimbatore	DR	DR			DR	DR	DR	DR	DR	DR
31	Dharwad									DR	DR
32	Vellayani									DR	DR
33	Raichur			-		DR	DR	DR		DR	DR
34	Karaikkal	DR	DR								
Total Locat	tion	23/23	23/23	11/11	6/7	19/19	19/19	19/19	9/10	26/28	13/13

AICRP on Forage Crops & Utilization Annual Report Kharif-2021 A-1

APPENDIX I: FORAGE CROP IMPROVEMENT TRIALS AT A GLANCE: (KHARIF-2021)

	arif-2021	Tr11	Tr12	Tr13	Tr14	Tr15	Tr16	Total
Zone	Location	IVT	AVT-2 Dinanath	AVT-2	VT Cenchrus	VT Cenchrus	VT BXN Bajra Napier	
		Rice Bean	Grass	Dinanath	Ciliaris-2019 3 rd Year	Setigerus-2019 3rd	Hybrid-2019 3 rd year	
				Grass (seed)		Year		
1 (HZ)	Palampur						DR	4/4
2	Srinagar							3/3
3	Almora						DR	3/3
4	Rajouri							3/3
5 (NWZ)	Bikaner				DR	DR	DR	8/8
6	Jalore							7/7
7	Hisar				TF	TF	TF	6/12
8	Ludhiana				DR		DR	11/11
9	Pantnagar							5/5
10	Udipur							3/4
11	Avikanagar				DR	DR		5/5
12	Jodhpur				DR	DR		2/2
13 (NEZ)	Jorhat	DR	DR				DR	5/5
14	Kalyani	DR	DR					4/4
15	Bhubaneswar	DR	DR				DR	10/10
16	Ranchi	DR	DR	DR			DR	11/11
17	Pusa	DR	DR	DR				11/11
18	Ayodhya							8/8
19	CAU Imphal	DR	DR					6/6
20 (CZ)	Jhansi		DR	DR	DR	DR		11/11
21	Rahuri				DR	DR	DR	10/10
22	Urulikanchan				DR	DR	DR	11/11
23	Anand				DR	DR	DR	9/9
24	Jabalpur	DR	DR	DR	DR	DR	DR	14/14
25	Raipur	DR			DR	DR	DR	13/13
26	Karjat (Dapoli)	DR						1/1
27	Meerut							1/1
28 (SZ)	Hyderabad				DR		DR	10/10
29	Mandya		DR	DR	DR	DR	DR	13/13
30	Coimbatore				DR	DR	DR	11/11
31	Dharwad							2/2
32	Vellayani	DR					DR	4/4
33	Raichur							5/5
34	Karaikkal							2/2
Total Locati		10/10	9/9	5/5	13/14	11/12	16/17	232/239

Abbreviations: **DR** = Data reported, **DNR**= Data not reported, **TF** = Trial failed, **Success index (%)** = 97.07(%)

APPENDIX II: FORAGE CROP PRODUCTION TRIALS AT A GLANCE: (KHARIF-2021)

Location/ Trial	K-20-AST-1a	K-20-AST-1b	K-21-AST-7	K-20-AST-3	K-20-AST-6	K-20-AST-5	R-19-AST-5	K-21-AST-1	K-21-AST-2	K-21-AST-3	K-21-AST-5	Total
HILL ZONE												
Palampur		DR										1/1
Srinagar		DR			DR							2/2
NORTH WEST ZONE												
Hisar									DR			1/1
Ludhiana			DR					DR	DR		DR	4/4
Bikaner	DR							DR				2/2
Pantnagar								DR	DR			2/2
NORTH EAST ZONE												
Ayodhya		DR										1/1
Ranchi	DR							DR		DR		3/3
Imphal	DR									DR		2/2
Pusa			DR					DR				2/2
Kalyani											DR	1/1
Varanasi			DR									1/1
Mirzapur											DR	1/1
CENTRAL ZONE												
Jabalpur			DR									1/1
Rahuri	DR											1/1
Urulikanchan								DR				1/1
Anand								DR	DR			2/2
NDDB Anand											DR	1/1
Raipur			DR					DR	DR		DR	4/4
Banda	DR											1/1
SOUTH ZONE												
Hyderabad			DR					DR			DR	3/3
Mandya		DR						DR		DR		3/3
Coimbatore				DR								1/1
Vellayani						DR	DR					2/2
Total (DR & TC)/ Allotted	5/5	4/4	6/6	1/1	1/1	1/1	1/1	10/10	5/5	3/3	6/6	43/43

Abbreviations: DR = Data reported, Success index (%) = 100 (%)

AICRP on Forage Crops & Utilization

A-2

Annual Report Kharif-2021

APPENDIX-III: FORAGE CROP PROTECTION TRIALS AT A GLANCE (KHARIF-2021)

Locations /Trial	PPT-1	PPT-2	PPT-25	PPT-26	PPT-27	PPT-28	PPT-29	PPT-30	PPT-31	PPT-32	Total
OUAT, Bhubaneswar	DR	DR		DR	DR	DR		DR			6/6
IGFRI, Jhansi	DR	DR		DR	DR	DR				DR	6/6
CSKHPKV, Palampur	DR	DR		DR		DR	DR			DR	6/6
MPKV, Rahuri	DR	DR			DR	DR			DR		5/5
PAU, Ludhiana	DR	DR	DR	DR	DR	DR				DR	7/7
TNAU, Coimbatore	DR	DR							DR		3/3
Total	6/6	6/6	1/1	4/4	4/4	5/5	1/1	1/1	2/2	3/3	33/33

DR=Data reported, DNR= Data not reported, Success index (%) = 100 %

AICRP on Forage Crops & Utilization

Annual Report Kharif-2021

APPENDIX IV: DIRECTORY OF SCIENTIFIC STAFF: AICRP ON FORAGE CROPS & UTILIZATION CENTERS

Name	Designation & Discipline	Tel. Office	Tel. Residence	Fax	E-mail			
	Anand Agricultural University, Anand Campus, Anand-388 110 (Gujrat)							
Dr. D. P. Gohil	Research Scientist (FC) –Plant Breeding	02692-264179/	9974175796	02692-	forageanand@gmail.com			
Dr. H. K. Patel	Scientist (Agronomy)	225861	9898977551	261520/	hiren@aau.in			
Dr. P. H. Rathod	Scientist (Biochemistry)		9408856727	261526	rathod23904@aau.in			
	Assam Agricultural University, Jorhat-785013 (Assam)							
Dr. S. Bora Neog	Principal scientist (PB)	0376-2340044	09435091670		seujiboraneog@yahoo.com			
Dr. A. K. Bhattacharya	Director (Research)	0376-2340044	0376-2340044	0376- 2310831	dr_agri@aau.ac.in			
	BAIF Development Research	n Foundation, Urulik	kanchan, Pune-412 202 (M	/laharashtra)				
Mr. P.S. Takawale	Forage Breeder (PBG) & OIC	9834662093 8668511570	09881369750	020- 26926347	pramodkumar.takawale@baif.org.in			
Mr. R. V. Kale	Scientist (Agronomy)	9834662093 8668511570	09096590204		rahul.kale@baif.org.in			
Dr. A. B. Pande	Group Vice President (Livestock & Scientific Research)	020-25231661	09325010213		abpande@baif.org.in			
	Bidhan Chandra Krishi Vishwavidyalaya, Mohanpur-741 252, Distt. Nadia (West Bengal)							
Dr. Kalyan Jana	Officer In Charge & Assistant Professor, Agronomy	033-25828407	09932250618	033- 25828407	foragebckv@gmail.com kjanarrs@gmail.com			
Dr. Sutanu Sarkar	Assistant Professor, Plant Breeding	033-25828407	09883084507	033- 25828407	sutanumax@gmail.com			
Prof. G. C. Hazra	Director of Research	033-25828407	06295626637	033- 25828407	bckvdr@gmail.com			
	Birsa Agricultural	University, Kanke, F	Ranchi-834 006 (Jharkhai	nd)				
Dr. Yogendra Prasad	Jr. Scientist (Plant Breeding) & OIC		09431322453		yogendraprasad_bau@rediffmail.com			
Dr. Birendra Kumar	Jr. Agronomist		07004203996		kbirendra1973@gmail.com			
Dr. S. K. Pal	Director of Research	0651-2450610	09431175736	0651- 2451011	dr_bau@rediffmail.com			
	C.S.K. Himachal Pradesh Krisl	hi Vishwavidyalaya,	Palampur-176 062 (Hima	chal Pradesh)				
Dr. Naveen Kumar	Principal Scientist (Agronomy) & OIC	01894-230392	09418149173	01894- 230511	nkumarhp@gmail.com			
Dr. V. K. Sood	Principal Scientist (PB)	01894-230391	08628040403		vkspbg23@rediffmail.com			
Dr. D. K.Banyal	Principal Scientist (PP)	01894-230326	09418111480		dkbanyal@gmail.com			
Dr. Rajan Katoch	Scientist Biochemistry	01894-230391	09418121870		rajankatoch@yahoo.com			
Dr. S. P. Dixit	Director of Research	01894-230406	09418291095 (M)	01894- 320406	dttech@hillagric.ac.in			

Name	Designation & Discipline	Tel. Office	Tel. Residence	Fax	E-mail	
C.C.S. Haryana Agricultural University, Hisar-125 004 (Haryana)						
Satyawan Arya	Assistant Scientist (Plant Breeding)	01662-255270	9416548140		foragehau@gmail.com	
			7988073464			
Dr. Minakshi	Assistant Scientist (GPB), Forage Section	01662-255270	9041126105		jattanmina@gmail.com	
Dr. Naveen Kumar	Assistant Scientist (Agronomy)	01662-255270	9416547443		nknaveenroyal@gmail.com	
Dr. S. K. Sehrawat	Director of Research	01662-284340	9053093003	01662-255258 (SVC)	drccshau@gmail.com	
	Central Agricultural U	Iniversity, Post Box	No.23, Imphal-795 00	4 (Manipur)		
Dr. R. Joseph Koireng	Agronomist & OIC	0385-2410427	09612976457		josephkoireng@rediffmail.com/ aicrpforagecauimphal@gmail.com	
Dr. S. Basanta Singh	I/C Director of Research	0385-2410415	9612161841	0385-2410415	drcau@yahoo.co.in dorcau@gmail.com	
	G.B. Pant University of A	griculture & Techno	logy, Pantnagar-263 1	45 (Uttrakhand)	1	
Dr. Mahendra Singh Pal	Professor Agronomy	05944-234448	05944233279	05944 233473	drmspal1@gmail.com	
Program Coordinator		7579177380			profmspal@yahoo.com	
Dr. Birendra Prasad	Professor Gen & PB	7906194355			prasadbsst@gmail.com	
Dr. Mohan Singh	Agronomist	7500241451	-	-	mohansingh10262@gmail.com	
Dr. A S Nain	Director Research	05944-233363	7500211418	05944-2347334	desgbpuat@gmail.com	
			, Raipur (Chattisgarh)	<u>-492001</u>		
Dr. S. K. Jha	Scientist (Agronomy)	07716888879	09926113737		skjha_igau@yahoo.co.in	
Dr. Sunil Verma	Scientist (PB)		920022 10272		Sunil.verma244@gmail.com	
Dr. Vivek Kumar Tripathi	Directorate of Research Services	91-771-2443035	98261 74530	91-771-2443035 91-771-2442131	drs_igkvr@yahoo.com	
	Jawahar Lal Nehru Kris	shi Vishwavidyala, J	abalpur-482 004 (Mad	hya Pradesh)		
Dr. Amit Jha	Scientist (Agronomy)		09425469854		amitagcrewa@rediffmail.com	
Dr. S. K. Biliaya	Principal Scientist (PB)		09425165543		-	
Dr. Dhirendra Khare	Director (Research)	0761-2681200 0761-2681074	0761-2681614	0761-2681074	drsjnkvv@gmail.com	
	Kerala Agricultural University, Coll	ege of Agriculture,	Vellayani-695522 Thiru	ıvananthapuram (Kerala)	
Dr. Usha C. Thomas	Professor (Agronomy) & OIC		9496301170		ushacthomas@gmail.com	
Dr. Gayathri.G	Assistant Professor (PB)	0471-2381002	8289897357		gayathri.g@kau.in	
Dr. Madhu Subramanian	Director of Research	0487-2438101	7907242525		dr@kau.in	
		Krishi Vidyapeeth, F	<u> Rahuri-413722 (Mahara</u>	ishtra)		
Dr. G. N. Deore	Forage Breeder & OIC	9423438513	9423438513		gndeore.60@gmail.com	
Dr. Sandip Landge	Scientist-1 (Entomology)	08830512132	07588604043	02426-243223	landge_sandip@rediffmail.com	
Dr. Shivaji V. Damame	Scientist-1 (Biochemistry)	8275592262	08275592262	02426-243223	shivajidamame@gmail.com	
Dr. V. B. Shinde	Grass Breeder & O/c	8275440715	-		Vbshinde70@gmail.com	
Dr. S. R. Gadakh	Director of Research	02426-243261	0 9423164967	02426-243223	dormpkv@rediffmail.com	
	A.N.D. University of Agriculture			1 221 (Uttar Prades		
Dr. Shambhoo Prasad	Dy. Director Research	05270-262051	08818280955 09450766603	-	drnduat@gmail.com	
Dr. Piyusha Singh	Forage Breeder		9458362834		Piyusha_singh@yahoo.com	
Dr. Rajesh Kumar	Jr. Agronomist		9452520242		rajeshnduat@gmail.com	

AICRP on Forage Crops & Utilization

B-2

Annual Report Kharif-2021

Name	Designation & Discipline	Tel. Office	Tel. Residence	Fax	E-mail		
Odisha University of Agriculture & Technology, Bhubaneswar-751003 (Odisha)							
Dr. Arabinda Dhal	Jr. Pathologist		09937193430		foragebbsr@gmail.com		
Dr. S. Sahu	Dean of Research	0674-2397692	0674-2397692	-	deanresearch_03@hotmail.com		
	Punjab Agricultural University, Ludhiana-141 004 (Punjab)						
Dr. R. S. Sohu	Principal Forage Breeder I/C		09876743898	0161-2401960	inchargeforages@pau.edu		
	Forage, Millets & Nutrition Section						
Dr. Maninder Kaur	Agronomist	0161-2401960 Ext. 443	08607754264	0161-2400945 0161-2409891	manindersindhu@pau.edu		
Dr. Rahul Kapoor	Senior Forage Breeder	-do-	09815585599	-do-	rahulkapoor@pau.edu		
Dr. Ashlesha Singla	Plant Pathologist (Forage)	-do-	09872874383	-do-	ashlesha-atri@pau.edu		
Dr. Meenakshi Goyal	Biochemist	-do-	09216176800	-do-	meenakshigoyal@pau.edu		
Dr. Harpreet Kaur Cheema	Senior Entomologist	-do-	09872869983	-do-	hkcheema@pau.edu		
Dr. A.S. Dhatt	Director Research	0161-2401221	0161-2404433	0161-2407309	drpau@pau.edu		
Professo	or Jayashankar Telangana State Ag	ricultural University (P	JTSAU) Rajendra	nagar, Hyderabad-	500 030 (Telangana)		
Dr. T. Shashikala	Principal Scientist (PB) & Head	040-24001706	09849152482	040-24001706	tshashikala69@gmail.com forage_hyd@yahoo.com		
Dr. RVT.Balazzii Naaiik	Sr. Scientist (Agronomy)		9440104717	040-24001706	balazziipitsau@gmail.com		
Dr. T. Sukruth Kumar	Sr. Scientist (SSAC)		9491402702		Sukruthdr.ag@gmail.com		
Dr.Ch. Damodar Raju	Associate Director of Research	080083111779	9951335111	08540-221177	adrpalem@gmail.com		
Dr. R. Jagadeeshwar	Director of Research	040-24015078	8179540261	040-24017453	dr.pjtsau@gmail.com		
	Rajendra Prasad Centra	al Agricultural Universi	ty, Pusa, Samastip	our, 848 125 (Bihar			
Dr. Nilanjaya	Scientist (Plant Breeding)		6202843136/ 9801400108	06274-240255	nilanjayapbg@gmail.com		
Dr. Gangadhar Nanda	Asstt. Professor (Agronomy)		08938020771		gnanda@rpcau.ac.in		
		Agricultural University.	Bikaner-334 006	(Rajasthan)			
Dr. A. S. Godara	Prof. (Plant Breeding)	0151-2111406	9460043084	0151-2250570	godara_as@yahoo.com		
Dr. R. C. Bairwa	Assistant Prof. (Agronomy)	0151-2111406	09413969540	0151-2250570	ramesh_ag@hotmail.com		
Dr. P.S. Shekhawat	Director Research	0151-2250199 0151-2250576	09414003248	0151-2250576	dor@raubikaner.org		
	S.K. University of Agricul	ture Science & Techno	logy, Srinagar-190	001, Kashmir (J &	K)		
Dr. Zahida Rashid	Agronomist		09469673198		Zahida1926@gmail.com		
Dr. N. Saleem Khuroo	Assoc. Prof. (PB)	09596769713	07889723718	-	Skhuroo0909@gmail.com		
	Tamil Nadu Agrid	cultural University, Coi	mbatore-641 003 (Tamil Nadu)			
Dr. K. N. Ganesan	Professor (PBG) & OIC	0422-6611228	09487019529	-	forage@tnau.ac.in knganesan71@gmail.com		
Dr. S. Rani	Assistant Prof. (Agronomy)	0422-6611228	72000 95422	-	malarrani82@gmail.com		
Dr. K. Premalatha	Assistant Prof. (Entomology)	0422-6611228	76392 12345	-	kpremalatha2003@yahoo.co.in		
Dr. M. Raveendran	Director of Research	0422-6611447, 547	9842181968 8148095400	0422-2436325	drres@tnau.ac.in raveendrantnau@gmail.com		

AICRP on Forage Crops & Utilization

Annual Report Kharif-2021

B-3

Name	Designation & Discipline	Tel. Office	Tel. Residence	Fax	E-mail	
University of Agricultural Sciences (Bengaluru) Zonal Agril. Res. Station, VC Farm, Mandya-571405 (Karnataka)						
Dr. B. G. Shekara	Principal Scientist (Agronomy) & OIC	08232-277925	09900618898		shekara_gundanaik@rediffmail.com bgshekar66@gmail.com	
Dr. P Mahadevu	Principal Scientist (GPB)	08232-277925	09945332633	08232-277966	pmahadevu69@gmail.com	
Dr. Venkatesh	Associate Director of Research	08232-277147	09449866917		adrzarsmandya@gmail.com	
Dr. Y. G. Shadakshari	Director of Research	080-23330206	09449866903	080-23330206	druasgkvkb@gmail.com	
	ICAR-Central Arid Zone	Research Institute,	Jodhpur-342 003 (F	<u>Rajasthan)</u>		
Dr. O.P. Yadav	Director	0291-2786584	0291-2788484	0291-2788706	director.cazri@icar.gov.in	
Dr. M. P. Rajora	Pr. Sci. (PB)	0291-27 86483	09461269336	0291-2788706	mprajora1@gmail.com	
Dr. J. P. Singh	Pr. Sci. (Eco Bot)		09929273918			
	agaland University- School of Agricultu	ral Sciences & Rura		<u>dziphema-797106,</u>		
Dr. Tankeswar Gohain	Assistant Professor		09436430276		tankeswar1968@gmail.com	
	ICAR- National Dairy	y Research Institute	<u>, Karnal-132001 (Ha</u>	<u>ryana)</u>		
Dr. Magan Singh	Senior Scientist		08901122193		magansingh07@gmail.com	
	ICAR - CAZRI Regiona	I Research Centre C	AZRI Jaisalmer, (R	<u>ajasthan)</u>		
	Head	02992 252412				
	ICAR - Indian Institute of Mai	ze Research, PAU C	ampus Ludhiana, 1	41004 (Punjab)		
Dr. Sujoy Rakshit	Director	011-5841805		011-25848195	pdmaize@gmail.com	
<u>ICA</u>	R -Directorate of Maize Research, Region	onal Maize Research	n and Seed Product	ion Centre, Begus	arai (Bihar)	
Dr. V. K. Yadav	Sr. Scientist I/c Station	06243-215254				
<u>IC</u>	CAR- Indian Institute of Seed Science, P	P. B. No. 11, Village :	Kushmaur (P.O. Ka	aithauli, Mau-275 1	101 (U.P.)	
Dr. Sanjay Kumar	Director	0547-2530326	9013563919		Director.seed@icar.gov.in	
	ICAR-Indian Institute of Wheat 8	& Barley Research, F	P.B. No. 158, Karnal	-132 001 (Haryana	1)	
Dr. G. P. Singh	Project Director	0184-2267490	0184-2267559	0184-2267390	indu.dwr@icar.org.in	
Dr. R. P. S. Verma	PS & PI, Barley Network	0184-2267490/ 2265632/2267495	09416468414	0184-2267390	rpsverma.dwr@icar.org.in	
	ICAR-IARI Regional	Research Station, I	Karnal-132 001 (Hai	ryana)		
Dr. V. K. Pandita	Head	0184-2267169	0184-2267365	0184-2266672	ssatwal.iari@gmail.com	
	ICAR-Indian Institute of Millet	s Research, Rajend	ranagar, Hyderabad	I-500 030, (A.P.)	-	
Dr. Vilas Tonapi	Director		040 - 2459 9301	040 - 24599304	millets.icar@nic.in	
					director.millets@icar.gov.in	
	ICAR- Indian Institute of Farming Systems Research, Modipuram, Meerut-250110					
Dr. A. S. Panwar	Director	0121-2888711		0121-2888546	directoriifsr@yahoo.com	

Name	Designation & Discipline	Tel. Office	Tel. Residence	Fax	E-mail		
ICAR-National Bureau of Plant Genetic Resources, New Delhi-110 012							
Dr. Ashok Kumar	Director	011-25843697	011-25841177	011-25842495	director.nbpgr@icar.gov.in		
Dr. Anjali Kak	Principal Scientist	011-25841835		011-25841835	anjali@nbpgr.ernt.in		
	ICAR Research Complex for NEI						
	Director	0364-2570257	0364-2570302	0364-2570288/ 2570501/	director@icarneh.ernet.in		
		Development Board, An	<u>nand-388 001 (Gu</u>				
Dr. Digvijay Singh	Sr. Manager (PS-AH)	02692-226246 (O)	02692- 226517(R)	09426389619	dsingh@nddb.coop		
	Agriculture Research Station, M		<u>istrict- Palghar (</u>				
A. S. Dhane	Jr. Entomologist	02525-241048		07028065626	nandishala@gmail.com ankurdhane@gmail.com		
Dr. U. V. Mahadkar	Director Research				dorbskkv@rediffmail.com		
	Dr. Balasaheb Sawant Konkan			5 712 (Maharashtra)			
Dr. R. B. Ulemale	Jr. Agronomist & OIC Forage	0724-258200/ 2258467					
	Grassland Research Station Ju	nagadh Agricultural Ur	<u>niversity, Dhari (D</u>	<u> Distt. Amreli), Gujarat</u>			
Dr. Anshuman Dalpatrai Rathod	Assoc. Research Scientist (Agronomy)	02797-221117					
Mr. V. V. Ansodariya	Assistant Research Scientist (Pl.Br.)	02797-221117	09824156656		grsdhari@jau.in		
	lain Agricultural Research Station, Unive	<u>rsity of Agricultural Sci</u>	iences, P. B. No.	<u>24, Raichur-548 101 (Ka</u>			
Dr. Ajith Kumar K.	Scientist (Pathology) In-charge Forage Section	08532-220193	9008333006	08532-220193	ajithk.path@gmail.com		
	Maharana Pratap University	of Agriculture & Techno	ology, Udaipur 3 [,]	13 001 (Rajasthan)			
Dr. R. B. Dubey	Assistant Professor (GPB)	0294-2420154 (Office)	9694383617		dubey_rb2006@yahoo.co.in		
Dr. Roshan Choudhary	Assistant Professor (Agronomy)	0294-2417334	9571233592	0294-2420447	roshan6109@yahoo.co.in		
Dr. P. L. Maliwal	Director Research	0294-2417334	9414162568	0294-24220447	dr@mapuat.ac.in		
	Pandit Jawahar Lal Nehru College	of Agril. & Research In	stitute, Karaikal	- 609 603 (Pudduchery)			
Dr. S. Mala	Prof. (Agronomy)	04368-261372 (O)	09487820451		mala_ap@yahoo.co.in		
	Pearl Millet Research Station Ju		niversity, Junaga	dh, Jamnagar-361 006			
Dr. P. R. Padhar	Research Scientist (Pearl Millet)	0288-2711793					
	Regional Agricultural Re	search Station, Karjat,	Raigad-410 201	(Maharashtra)			
Dr. P.B. Banawe	Asst. Rice Specialist		9898723119		ricespecialistkarjat@gmail.com bhart_breed@yahoo.co.in,		
Dr. P.M. Haldankar	Director of Research		9421809721		dorbskkv@rediffmail.com		
	Sardar Vallabh Bhai Patel Univ	ersity of Agriculture an	nd Technology. M	eerut-250 110 (U.P.)	<u>. </u>		
Dr. L. K. Gangwar	Prof. & Head (GPB)	0121-28888505	9411957307	0121-2411505	gangwarlk@gmail.com		
	S.K. Rajasthan Agriculture Unive				1 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
Dr. Ramdev Sutaliya	Zonal Director Research	02973-265915	09925949101		sutladol@gmail.com		
	•	1		·	·		

AICRP on Forage Crops & Utilization

Annual Report Kharif-2021

Name	Designation & Discipline		Tel. Office	Tel. Residence	Fax	E-mail	
S. K. University of Agril. Sciences & Technology, Regional Research Station, Rajouri B.P.O. Tandwal 185 131 (Jammu)							
Dr. Deepak Kumar	Sr. Scientist (Agril. Extension)			7006959781		rarsrajouri@gmail.com	
	ICAR- Vivekananda Parva	tiya Kris	shi Anusandhaı	n Sansthan, Alm	ora 263 601 (Uttrakha	and)	
Dr. J. K. Bisht	Pl. Sci. (Agron.) & OIC Forage	05962	2-230208/	05962-230130	05962-231539	bishtjk@hotmail.com	
	Research	23006	60				
	ICAR- Indian Grass	land an	d Fodder Resea	rch Institute. Jha	ansi-284 003 (U.P.)		
Dr. Amaresh Chandra	Director	0510-	2730666	9450041285		igfri.director@gmail.com	
						director.igfri@icar.gov.in	
Dr. Nagaratna Biradar	OIC IGFRI- SRRS, Dharwad	0836-	2447150	8618546485	0836-2743459	nagaratna123@gmail.com	
Dr. Shahid Ahmad	Pri Sci & Head CI Division			945077665		shahidigfri@gmail.com	
Dr. Vijay Yadav	Pri Sci & Head ST Division			94124463923		vijayyadav777@gmail.com	
Dr. Suhail Ahmed	OIC, IGFRI RRS, Srinagar			7006929670		suhail114@gmail.com	
Dr. R.P. Nagar	OIC, IGFRI RRS, Avikanagar			9214909817		rpnagar44@gmail.com	
	ICAR- AICRP on Forage Crops	and Util	ization, Project	Coordinating Un	it, IGFRI, Jhansi 284	003 (U.P.)	
Dr. A. K. Roy	Project Coordinator	0510-	2730029	0510-2730639	0510-2730833	pcforage@gmail.com	
·				09415412144			
Dr. R. K. Agrawal	Pr. Scientist (Agronomy)	0510-	2730029	09415179141	0510-2730029	rajiv68@gmail.com	
Dr. N. R. Bhardwaj	Scientist (Plant Pathology)	0510-	2730029	7525060745	8954094647	nitish.rattanbhardwaj@gmail.com	
Dr. Subhash Chand	Scientist (GPB)	0510-	2730029	09483474935		subashchand5415@gmail.com	
	ICAR HQ, New Delhi						
Dr. T. R. Sharma	Deputy Director General (CS)	011-2	5842068	011-25842508	011-23097003	ddgcs.icar@nic.in	
		/2338	2545	0124-246166			
Dr. R.K. Singh	Asstt. Director General (FFC)	011-2	338433		011-23384323	ypsingh.icar@nic.in	

Regional Fodder Stations, Department of Animal Husbandry and Dairying, Government of India					
Office	Tel.	Mobile	E-mail		
Director I/c Regional Fodder Station, Camp Office, 618/A, Gandhinagar, Jammu 180 004 (J&K)	0191-2457698	09622928606	rfsjammu@gmail.com		
Dr. P. Thamodaran Director I/c Regional Fodder Station, Dhamrod, Campus CCBF, Ankaleshwar, Gujarat.	02629-290760	0948614838	rsfpdgujarat@yahoo.in rfsgujarat@gmail.com		
Sh. Banvir. Singh, Director Regional Fodder Station, P.O. Pahari Sharif, Via Keshavgiri, Hyderabad 501510 Telengana	08415201034	08099801610	rsfphyd@redif fmail.com directorrsfphy d@gmail.com director-rfshyd@gov.in		
Dr. P. Mahesh Director I/c Regional Fodder Station, Hesserghatta, Bangalore North 560088	08028466279	09845616268 09449926784	directorcfspf @yahoo.in directorcfspf @gmail.com		
Sh. A. K. Yadav, Director I/c Regional Fodder Station, P.O. Dairy Farm, Via Red Hills, Chennai-52	04426310884	09445210582	rsfpdchennai @gmail.com		
Sh. Brijendra Koli Director I/c Regional Fodder Station, P.O. Netaji Subhash Sanitorium, Distt. Nadia – 741251(WB)	03325898425	09086003194	rsfpd.kalyani @gmail.com		
Dr. Prem Pal Singh Director I/c Regional Fodder Station, P.O Textile Mills, Hissar125002	01662259184	09416300997	rfshisardirector@mail.com		
Dr. Santosh Menon Director I/c Regional Fodder Station Suratgarh, Rajasthan-335804	01509268047	09413553781	dir.rsfpdstg@g mail.com		

AlCRP on Forage Crops & Utilization

Annual Report Kharif-2021

B-6

Private Companies						
Office	Mobile	E-mail				
Dr. Sukhpal Singh, Head- R&D, Foragen Seeds Pvt. Ltd,# 8-2-618/A, Flat 302, Road No-11 Banjara Hills, Hyderabad-500 034	9989211318	sukhpal.singh@foragenseeds.com				
Prabhakar Babu. G CEO & Co-Founder Foragen Seeds Pvt. Ltd, Hyderabad	9000002334	www.foragenseeds.com				
Khoja Habib Mamad, Alamdar Seeds, Main Market, Nagalpar Moti, Gujarat 370110	997989412	alamdar_seeds@yahoo.co.in				
Gopal Bele, Crop Lead Pearl Millet, Hytech Seeds India Pvt. Limited, Hyderabad	9347057302	b.gopal@hytechseed.in				
Bhuwan Parihar, Assoc. Breeder (Pearl Millet), J. K. Agri Genetics Ltd	9110570862	bhuwanparihar@jkagri.com				
Bramareswara Rao.K, Sr. Breeder, Pearl Millet, M/s. Rasi Seeds (P) Ltd., Survey no 444, 442, 443 Station Masaipet, Veldurthymandal, Medak-502334 Telangana	9908499477	bramareswararao.k@rasiseeds.in				
Rajan Gupta, Principal Breeder – Corn, Rasi Seeds (P) Ltd. Survey Nos. 60/1, 60/2, 61/1, Kakkehalli, Doddatumkur Post, Doddaballapur Taluk, Bangalore Rural District -561203	9686101150	rajan.gupta@rasiseeds.com				
Aditiya Sharma Sr. Breeder Forage Millet, Advanta UPL, Limited, Hyderabad	9849557468	aditya.sharma@advantaseeds.com				
Dr. S.M. Rafiq, General Manager R & D, Nuziveedu Seeds Ltd	9581412496	mohdrafiq.s@nuziveeduseeds.com				
Mahanand, Kanchan Ganga Seed Company Pvt. Ltd. 6-3-1085/D/202, Dega Towers, Rajbhavan Road, Somajiguda, Hyderabad - 500 082	9140 23311915	kanchanseeds@gmail.com				
Dr. Gopal Gharde, Breeding Lead, Crystal Corporation Protection Limited, Sy. No. 271/E, 271/EE, 271/U, Singaipalle villege road, Karimanagar, Hyderabad, Telangana-502279	9423394765	gopal.gharde@crystalcrop.com				